342 ENGINEERING THERMODYNAMICS
dharm
\M-therm\Th7-1.pm5
Then the differential of the dependent variable x is given by
dx =
∂
∂
∂
∂
x
y
dy x
z z y
F
HG
I
KJ
+F
HG
I
KJ^ dz ...(7.2)
where dx is called an exact differential.
If
∂
∂
x
y z
F
HG
I
KJ = M and
∂
∂
x
z y
F
HG
I
KJ = N
Then dx = Mdy + Ndz ...(7.3)
Partial differentiation of M and N with respect to z and y, respectively, gives
∂
∂
∂
∂∂
M
z
x
yz
=
2
and
∂
∂
∂
∂∂
N
y
x
zy
=
2
or
∂
∂
∂
∂
M
z
N
y
= ...(7.4)
dx is a perfect differential when eqn. (7.4) is satisfied for any function x.
Similarly if y = y(x, z) and z = z(x, y) ...(7.5)
then from these two relations, we have
dy =
∂
∂
y
x z
F
HG
I
KJ^ dx +
∂
∂
y
z x
F
HG
I
KJ^ dz ...(7.6)
dz =
∂
∂
z
x y
F
HG
I
KJ^ dx +
∂
∂
z
y x
F
HG
I
KJ^ dy ...(7.7)
dy =
∂
∂
y
x z
F
HG
I
KJ^ dx +
∂
∂
y
z x
F
HG
I
KJ^
∂
∂
∂
∂
z
x
dx z
y
dy
y x
F
HG
I
KJ
+
F
HG
I
KJ
L
N
M
M
O
Q
P
P
=
∂
∂
∂
∂
∂
∂
y
x
y
z
z
zxx y
F
HG
I
KJ
+F
HG
I
KJ
F
HG
I
KJ
L
N
M
M
O
Q
P
P^ dx +
∂
∂
∂
∂
y
z
z
x y x
F
HG
I
KJ
F
HG
I
KJ^ dy
=
∂
∂
∂
∂
∂
∂
y
x
y
z
z
zxx y
F
HG
I
KJ
+F
HG
I
KJ
F
HG
I
KJ
L
N
M
M
O
Q
P
P^ dx + dy
or
∂
∂
∂
∂
∂
∂
y
x
y
z
z
zxx y
F
HG
I
KJ
+F
HG
I
KJ
F
HG
I
KJ = 0
or
∂
∂
∂
∂
y
z
z
x x y
F
HG
I
KJ
F
HG
I
KJ = –
∂
∂
y
x z
F
HG
I
KJ
or
∂
∂
∂
∂
∂
∂
x
y
z
x
y
z y z x
F
HG
I
KJ
F
HG
I
KJ
F
HG
I
KJ = – 1 ...(7.8)
In terms of p, v and T, the following relation holds good
∂
∂
∂
∂
∂
∂
p
v
T
p
v
T v T p
F
HG
I
KJ
F
HG
I
KJ
F
HG
I
KJ = – 1 ...(7.9)