THERMODYNAMIC RELATIONS 359
dharm
\M-therm\Th7-1.pm5
Substituting this value in eqn. (3), we get
(dh)T = v
p
v T
p
TvT
∂
∂
F
H
I
K +
∂
∂
F
H
I
K
L
N
M
O
Q
P dv ...(4)
8.7. Van der Waal’s Equation
∂
∂
F
H
I
K
p
vT =
∂
∂−
F
H
I
K−
L
NM
O
v QP
RT
vb
a
v^2 T
= – ()vbRT− 23 +^2 va ...(5)
∂
∂
F
H
I
K
p
T v =
∂
∂−
F −
HG
I
KJ
L
N
M
M
O
Q
P
T P
RT
vb
a
v^2 v
= vbR− ...(6)
Substituting the values of eqns. (5) and (6) in equation (1), we get
(dh)T = v RT
vb
a
v
T R
vb
−
−
+
R
S
T
U
V
W
+
−
F
HG
I
KJ
L
N
M
M
O
Q
P
()^23 P
(^2) dv
∴ ()dhT
1
2
z = – RT^
v
z (^1) ()vb− 2
2
dv + 2a
dv
(^1) v^2
2
z + RT^
dv
z 1 ()vb−
2
∴ (h 2 – h 1 )T = – RT loge vbvb^2 b vbvb
121
− 11
−
F
HG
I
KJ
− RS − − −
T
U
V
W
L
N
M
O
Q
P
- 2a 11
21
2
vv 1
− RT e vbvb
F
HG
I
KJ
+ −−
F
HG
I
KJ
log
= bRT (^) (v^1 b) (v^1 b)
21 −
L − −
NM
O
QP
- 2a 1
v
1
21 v
−
L
N
M
O
Q
P. (Ans.)
(iii)Change in entropy :
The change in entropy is given by
ds = cp dTT Tp
v
+FH∂∂ IK. dv
For Van der Waals equation,
∂
∂
F
H
I
K = −
p
T
R
v vb ...as per eqn. (6)
∴ ds = cv dTT +vbR− dv
∴ ds
1
2
z = cv^
dT
T
R dv
vb
L
NM
O
QP
+
zz 1 ()−
2
1
2
∴ s 2 – s 1 = cv loge T
T
2
1
L
N
M
O
Q
P + R loge^
vb
vb
2
1
−
−
L
N
M
O
Q
P. (Ans.)
Example 7.6. The equation of state in the given range of pressure and temperature is
given by
v =
RT
p
C
T
− 3
where C is constant.
Derive an expression for change of enthalpy and entropy for this substance during an
isothermal process.