TITLE.PM5

(Ann) #1
THERMODYNAMIC RELATIONS 359

dharm
\M-therm\Th7-1.pm5


Substituting this value in eqn. (3), we get

(dh)T = v

p
v T

p
TvT



F
H

I
K +



F
H

I
K

L
N
M

O
Q
P dv ...(4)

8.7. Van der Waal’s Equation




F
H

I
K

p
vT =


∂−

F
H

I
K−

L
NM

O
v QP

RT
vb

a
v^2 T

= – ()vbRT− 23 +^2 va ...(5)



F
H

I
K

p
T v =


∂−

F −
HG

I
KJ

L
N

M
M

O
Q

P
T P

RT
vb

a
v^2 v

= vbR− ...(6)

Substituting the values of eqns. (5) and (6) in equation (1), we get

(dh)T = v RT
vb

a
v

T R
vb


+
R
S
T

U
V
W

+

F
HG

I
KJ

L
N

M
M

O
Q

P
()^23 P

(^2) dv
∴ ()dhT
1
2
z = – RT^
v
z (^1) ()vb− 2
2
dv + 2a
dv
(^1) v^2
2
z + RT^
dv
z 1 ()vb−
2
∴ (h 2 – h 1 )T = – RT loge vbvb^2 b vbvb
121
− 11

F
HG
I
KJ
− RS − − −
T
U
V
W
L
N
M
O
Q
P



  • 2a 11
    21


2
vv 1
− RT e vbvb
F
HG

I
KJ
+ −−
F
HG

I
KJ
log

= bRT (^) (v^1 b) (v^1 b)
21 −
L − −
NM
O
QP



  • 2a 1
    v


1
21 v


L
N

M


O
Q

P. (Ans.)
(iii)Change in entropy :
The change in entropy is given by
ds = cp dTT Tp
v

+FH∂∂ IK. dv
For Van der Waals equation,


F
H

I
K = −

p
T

R
v vb ...as per eqn. (6)
∴ ds = cv dTT +vbR− dv

∴ ds
1

2
z = cv^

dT
T

R dv
vb

L
NM

O
QP

+
zz 1 ()−

2
1

2

∴ s 2 – s 1 = cv loge T
T

2
1

L
N

M


O
Q

P + R loge^


vb
vb

2
1



L
N

M


O
Q

P. (Ans.)
Example 7.6. The equation of state in the given range of pressure and temperature is
given by
v =
RT
p

C
T

− 3
where C is constant.
Derive an expression for change of enthalpy and entropy for this substance during an
isothermal process.
Free download pdf