THERMODYNAMIC RELATIONS 365dharm
\M-therm\Th7-2.pm5
Now substituting this in eqn. (i), we getds = cp
dT
Ts
T p−F
HGI
KJ∂
∂. dp ...(ii)
But β =^1 v Tv
p∂
∂F
HI
K
Substituting this in eqn. (ii), we getds = cp dTT – βvdp (Ans.)Example 7.11. Derive the following relations :(i)HF∂∂TpIK
s= Tvc
pβ (ii) ∂
∂F
HI
KT
v s = –T
cKvβ.where β = Co-efficient of cubical expansion, and
K = Isothermal compressibility.
Solution. (i) Using the Maxwell relation (7.19), we have
∂
∂F
HI
KT
p s =∂
∂F
HI
Kv
s p =∂
∂F
HI
K∂
∂F
HI
Kv
TT
p s pAlso cp = T (^) HF∂∂TsIK
p
From eqn. (7.34), β =^1
v
v
T p
∂
∂
F
H
I
K
∂
∂
F
H
I
K =
T
p
vT
s cp
β
i.e., ∂
∂
F
H
I
K =
T
p
Tv
s cp
β. (Ans.)
(ii) Using the Maxwell relation (7.18)
∂
∂
F
H
I
K
T
v s = –
∂
∂
F
H
I
K
p
sv = –
∂
∂
F
H
I
K
∂
∂
F
H
I
K
p
T
T
vvs
Also cv = T (^) HF∂∂TsIK
v
(Eqn. 7.23)
K = –^1 v vp
T
∂
∂
F
H
I
K
(Eqn. 7.36)
Then FH∂∂TvIK
s
= – Tc Tp
v v
∂
∂
F
H
I
K
Also FH∂∂pvIK FH∂∂TvIKHF∂∂TpIK
T p v
= – 1
i.e., FH∂∂TpIK
v
= – ∂
∂
F
H
I
K
∂
∂
F
H
I
K
p
v
v
T T p
= – HF−^1 vKKIβv = Kβ