VAPOUR POWER CYCLES 549
dharm
\M-therm\Th12-1.pm5
1
Boiler Turbine
0.1 bar, 0.9 dry
0.09 bar
2
Saturated liquid 3
Wp
4
70 bar
Q 1 WT
60 bar, 380 Cº
65 bar
400 Cº
Q 2
Fig. 12.6
At 0.1 bar :
hf 2 = 191.8 kJ/kg, hfg 2 = 2392.8 kJ/kg (from steam tables)
and x 2 = 0.9 (given)
∴ h 2 = hf 2 + x 2 hfg 2 = 191.8 + 0.9 × 2392.8 = 2345.3 kJ/kg
Power output of the turbine = ms (h 1 – h 2 ) kW,
[where ms = Rate of steam flow in kg/s and h 1 , h 2 = Enthalpy of steam in kJ/kg]
=
10000
3600 (3123.5 – 2345.3) = 2162 kW
Hence power output of the turbine = 2162 kW. (Ans.)
(ii) Heat transfer per hour in the boiler and condenser :
At 70 bar : hf 4 = 1267.4 kJ/kg
At 65 bar, 400°C :ha =
3177.2 60 3158.1 70
2
bgbgbar+ bar
= 3167.6 kJ/kg
......(By interpolation)
∴ Heat transfer per hour in the boiler,
Q 1 = 10000 (ha – hf 4 ) kJ/h
= 10000 (3167.6 – 1267.4) = 1.9 × 107 kJ/h. (Ans.)
At 0.09 bar : hf 3 = 183.3 kJ/kg
Heat transfer per hour in the condenser,
Q 1 = 10000 (hh 2 − f 3 )
= 10000 (2345.3 – 183.3) = 2.16 × 10^7 kJ/h. (Ans.)
(iii) Mass of cooling water circulated per hour in the condenser, mw :
Heat lost by steam = Heat gained by the cooling water
Q 2 = mw × cpw (t 2 – t 1 )
2.16 × 10^7 = mw × 4.18 (30 – 20)
∴ mw = 2.16 10
4.18 30 20
×^7
bg−
= 1.116 × 107 kg/h. (Ans.)