GAS POWER CYCLES 607
dharm
\M-therm\Th13-1.pm5
(iii)Entropy change during the heat rejection process, (S 3 – S 4 ) :
Heat rejected = Heat added – Work done
= 243 – 130 = 113 kJ
673 K
313 K
12
4 3
Isotherms
Isentropics
T
S
Fig. 13.2
Heat rejected = T 3 (S 3 – S 4 ) = 113
∴ (S 3 – S 4 ) =
113 113
T 3 313
= = 0.361 kJ/K. (Ans.)
Example 13.2. 0.5 kg of air (ideal gas) executes a Carnot power cycle having a thermal
efficiency of 50 per cent. The heat transfer to the air during the isothermal expansion is 40 kJ. At
the beginning of the isothermal expansion the pressure is 7 bar and the volume is 0.12 m^3.
Determine :
(i) The maximum and minimum temperatures for the cycle in K ;
(ii)The volume at the end of isothermal expansion in m^3 ;
(iii)The heat transfer for each of the four processes in kJ.
For air cv = 0.721 kJ/kg K, and cp = 1.008 kJ/kg K. (U.P.S.C. 1993)
Solution. Refer Fig. 13.3. Given : m = 0.5 kg ; ηth = 50% ; Heat transferred during isothermal
expansion = 40 kJ ; p 1 = 7 bar, V 1 = 0.12 m^3 ; cv = 0.721 kJ/kg K ; cp = 1.008 kJ/kg K.
(i)The maximum and minimum temperatures, T 1 , T 2 :
p 1 V 1 = mRT 1
7 × 10^5 × 0.12 = 0.5 × 287 × T 1
∴ Maximum temperature, T 1 =
710 12
5 287
××^5
×
0.
- = 585.4 K. (Ans.)
ηcycle = TT
T
12
1
− ⇒ 0.5 = 585 4
585 4
. 2
.
−T
∴ Minimum temperature, T 2 = 585.4 – 0.5 × 585.4 = 292.7 K. (Ans.)