TITLE.PM5

(Ann) #1
620 ENGINEERING THERMODYNAMICS

dharm
\M-therm\Th13-2.pm5

Fig. 13.9. Atkinson cycle.

Now, T
T

p
p

5
3

5
3

1
=
F
HG

I
KJ

−γ
γ
or T 5 = 1842 ×
10
36 9

14 1

. 14
.


.
F.
HG

I
KJ


= 657 K

∴ηAtkinson = 1 –
1 4 657 300
1842 614 4

.( )
(.)


− = 0.5929 or 59.29%.
∴ Improvement in efficiency = 59.29 – 51.16 = 8.13%. (Ans.)
Example 13.11. A certain quantity of air at a pressure of 1 bar and temperature of 70°C is
compressed adiabatically until the pressure is 7 bar in Otto cycle engine. 465 kJ of heat per kg of
air is now added at constant volume. Determine :
(i)Compression ratio of the engine.
(ii)Temperature at the end of compression.
(iii)Temperature at the end of heat addition.
Take for air cp = 1.0 kJ/kg K, cv = 0.706 kJ/kg K.
Show each operation on p-V and T-s diagrams.
Solution. Refer Fig. 13.10.
Initial pressure, p 1 = 1 bar
Initial temperature, T 1 = 70 + 273 = 343 K
Pressure after adiabatic compression, p 2 = 7 bar
Heat addition at constant volume, Qs = 465 kJ/kg of air
Specific heat at constant pressure, cp = 1.0 kJ/kg K
Specific heat at constant volume, cv = 0.706 kJ/kg K


∴γ =

c
c

p
v

=

1.
0.

0
706 = 1.41
(i)Compression ratio of engine, r :
According to adiabatic compression 1-2
p 1 V 1 γ = p 2 V 2 γ
Free download pdf