GAS POWER CYCLES 699
dharm
\M-therm\Th13-6.pm5
∴ T 2 ′ =
435 4 293
08.
.−
+ 293 = 471 K
Now mf × C = (ma + mf) × cp × (T 3 – T 2 ′)
[ma = mass of air, mf = mass of fuel]∴ T 3 =mC
cm mf
p a f×
()+
+ T 2 ′ =1 41800
1.024 (90 1)×
+ + 471 = 919.5 KAlso, T
Tp
p4
34
31
=
F
HGI
KJ−γ
γor T 4 = T 3 ×
p
p4
31
F
HGI
KJ−γ
γ
= 919.5 ×
1.
3.01
914 1
F^14
HGI
KJ. −
.
= 625 K
Again, ηturbine =
TT
TT34
34−′
−∴ 0.85 =919 5
919 5 625. 4
.
−′
−T∴ T 4 ′ = 919.5 – 0.85(919.5 – 625) = 669 Kηthermal =()()
()TT T T
TT34 2 1
32−′− ′−
−′=
−−−
−(919.5 669) (471 293)=
(919.5 471)72.5
448.5 = 0.1616 or 16.16%. (Ans.)
Heat Exchanger Cycle. Refer Figs. 13.66 (a) and (b)
T 2 ′ = 471 K (as for simple cycle)
T 3 = 919.5 K (as for simple cycle)Work2 ¢C.C.CTFuel34 ¢ExhaustHeat
exchanger1
Air in(a)5