HEAT TRANSFER 795
dharm
\M-therm\Th15-1.pm5
or 400 =
1110
L
k
L
k
L
k
L
k
A
A
B
B
C
C
D
D
+++
or 400 = 02 1110
152
1000
0138
0 006
45
01
0138
.
.
(/ )
.
..
.
+++x
=
1110
01316 0 0072 0 00013 0 7246
1110
..... .+++0 8563 0 0072
=
xx+
or 0.8563 + 0.0072 x =^1110
400
= 2.775
or x =
2 775 0 8563
0 0072
..
.
−
= 266.5 mm. (Ans.)
(ii)Temperature of the outer surface of the steel plate tso :
q = 400 = ()
/
t
Lk
so
DD
− 40
or 400 = ()
(./. )
tso− 40
010138
= 1.38(tso – 40)
or tso =^400
138.
- 40 = 329.8°C. (Ans.)
Example 15.5. Find the heat flow rate
through the composite wall as shown in
Fig. 15.12. Assume one dimensional flow.
kA = 150 W/m°C,
kB = 30 W/m°C,
kC = 65 W/m°C and
kD = 50 W/m°C.
(M.U. Winter, 1997)
Solution. The thermal circuit for heat
flow in the given composite system (shown in
Fig. 15.12) has been illustrated in Fig. 15.13.
Thickness :
LA = 3 cm = 0.03 m ; LB = LC = 8 cm = 0.08 m ; LD = 5 cm = 0.05 m
Areas :
AA = 0.1 × 0.1 = 0.01 m^2 ; AB = 0.1 × 0.03 = 0.003 m^2
AC = 0.1 × 0.07 = 0.007 m^2 ; AD = 0.1 × 0.1 = 0.01 m^2
Heat flow rate, Q :
The thermal resistances are given by
Rth–A =
L
kA
A
AA
=
×
003
150 0 01
.
. = 0.02
Rth–B = L
kA
B
BB
=
×
008
30 0 003
.
.
= 0.89
A
B D
400 Cº C
60 Cº
10 cm
3 cm
5 cm
8 cm
3 cm
7 cm
Fig. 15.12