TITLE.PM5

(Ann) #1
HEAT TRANSFER 795

dharm
\M-therm\Th15-1.pm5

or 400 =
1110
L
k

L
k

L
k

L
k

A
A

B
B

C
C

D
D

+++

or 400 = 02 1110
152

1000
0138

0 006
45

01
0138

.
.

(/ )
.

..
.
+++x

=
1110
01316 0 0072 0 00013 0 7246

1110
..... .+++0 8563 0 0072
=
xx+

or 0.8563 + 0.0072 x =^1110
400

= 2.775

or x =
2 775 0 8563
0 0072

..
.


= 266.5 mm. (Ans.)
(ii)Temperature of the outer surface of the steel plate tso :

q = 400 = ()
/

t
Lk

so
DD

− 40

or 400 = ()
(./. )

tso− 40
010138
= 1.38(tso – 40)

or tso =^400
138.



  • 40 = 329.8°C. (Ans.)
    Example 15.5. Find the heat flow rate
    through the composite wall as shown in
    Fig. 15.12. Assume one dimensional flow.
    kA = 150 W/m°C,
    kB = 30 W/m°C,
    kC = 65 W/m°C and
    kD = 50 W/m°C.
    (M.U. Winter, 1997)
    Solution. The thermal circuit for heat
    flow in the given composite system (shown in
    Fig. 15.12) has been illustrated in Fig. 15.13.
    Thickness :
    LA = 3 cm = 0.03 m ; LB = LC = 8 cm = 0.08 m ; LD = 5 cm = 0.05 m
    Areas :
    AA = 0.1 × 0.1 = 0.01 m^2 ; AB = 0.1 × 0.03 = 0.003 m^2
    AC = 0.1 × 0.07 = 0.007 m^2 ; AD = 0.1 × 0.1 = 0.01 m^2
    Heat flow rate, Q :
    The thermal resistances are given by


Rth–A =
L
kA

A
AA

=
×

003
150 0 01

.

. = 0.02


Rth–B = L
kA

B
BB

=
×

008
30 0 003

.
.
= 0.89

A

B D
400 Cº C

60 Cº

10 cm

3 cm

5 cm
8 cm
3 cm

7 cm

Fig. 15.12
Free download pdf