HEAT TRANSFER 805
dharm
\M-therm\Th15-2.pm5
0.989 L × 10^3 =
2 150 20
1
100 0 06
008 006
42
008
08
1
30
3
3
πL
r
r
()
.
ln(. /. ) ln( /. )
.
−
×
+++
×
L
N
M
O
Q
P
0.989 × 10^3 =
816 81
0 16666 0 00685^008
08
1
30
3
3
.
..ln ( /. )
.
++ +
L
N
M
O
Q
P
r
r
or ln ( /. )
.
.
.
r
r
3
3 3
008
08
1
30
816 81
0 989 10
+=
×
- (0.16666 + 0.00685) = 0.6524
or 1.25 ln (r 3 /0.08) +
1
30 r 3
- 0.6524 = 0
Solving by hit and trial, we get
r 3 ~− 0.105 m or 105 mm
∴ Thickness of insulation = r 3 – r 2 = 105 – 80 = 25 mm. (Ans.)
15.2.8. Heat conduction through hollow and composite spheres
15.2.8.1. Heat conduction through hollow sphere
Refer Fig. 15.22. Consider a hollow
sphere made of material having constant ther-
mal conductivity.
Let r 1 , r 2 = Inner and outer radii,
t 1 , t 2 = Temperature of inner and
outer surfaces, and
k = Constant thermal conductiv-
ity of the material with the
given temperature range.
Consider a small element of thickness
dr at any radius r.
Area through which the heat is trans-
mitted, A = 4πr^2
∴ Q = – k. 4πr^2. dt
dr
Rearranging and integrating the above
equation, we obtain
Q dr
r r
r
1 2
2
z = – 4πk^ tdt
t
1
2
z
or Q
r
r
−+ r
−+
L
N
M
M
O
Q
P
P
21
21
1
2
= – 4πk t
t
L t
N
M
O
Q
P
1
2
or – Q
11
rr 21
−
F
HG
I
KJ
= – 4πk(t 2 – t 1 )
or
Qr r
rr
() 21
12
−
= 4πk (t 1 – t 2 )
or Q =
4
4
12 1 2
21
12
21
12
π
π
kr r t t
rr
tt
rr
kr r
()
() ()
()
−
−
= −
L −
N
M
O
Q
P
...(15.37)
Fig. 15.22. Steady state conduction
through a hollow sphere.
Q t 1 t 2
R=th 4k rrr– r2 1
π 12
Q
dr
Element
Hollow sphere
t 2
Q (Heat flows radially
outwards, t > t ) 12
r 2
rr (^1) t 1