TITLE.PM5

(Ann) #1
HEAT TRANSFER 805

dharm
\M-therm\Th15-2.pm5

0.989 L × 10^3 =
2 150 20
1
100 0 06

008 006
42

008
08

1
30

3
3

πL
r
r

()

.

ln(. /. ) ln( /. )
.


×
+++
×

L
N

M


O
Q

P


0.989 × 10^3 =

816 81
0 16666 0 00685^008
08

1
30

3
3

.
..ln ( /. )
.
++ +
L
N

M


O
Q

P


r
r
or ln ( /. )
.

.
.

r
r

3
3 3

008
08

1
30

816 81
0 989 10

+=
×


  • (0.16666 + 0.00685) = 0.6524


or 1.25 ln (r 3 /0.08) +
1
30 r 3


  • 0.6524 = 0
    Solving by hit and trial, we get
    r 3 ~− 0.105 m or 105 mm
    ∴ Thickness of insulation = r 3 – r 2 = 105 – 80 = 25 mm. (Ans.)


15.2.8. Heat conduction through hollow and composite spheres

15.2.8.1. Heat conduction through hollow sphere
Refer Fig. 15.22. Consider a hollow
sphere made of material having constant ther-
mal conductivity.
Let r 1 , r 2 = Inner and outer radii,
t 1 , t 2 = Temperature of inner and
outer surfaces, and
k = Constant thermal conductiv-
ity of the material with the
given temperature range.
Consider a small element of thickness
dr at any radius r.
Area through which the heat is trans-
mitted, A = 4πr^2


∴ Q = – k. 4πr^2. dt
dr
Rearranging and integrating the above
equation, we obtain


Q dr
r r

r
1 2

2
z = – 4πk^ tdt

t
1

2
z

or Q

r
r

−+ r
−+

L
N

M
M

O
Q

P
P

21
21
1

2
= – 4πk t
t

L t
N

M


O
Q

P
1

2

or – Q
11
rr 21

F
HG

I
KJ

= – 4πk(t 2 – t 1 )

or
Qr r
rr

() 21
12


= 4πk (t 1 – t 2 )

or Q =
4

4

12 1 2
21

12
21
12

π

π

kr r t t
rr

tt
rr
kr r

()
() ()
()



= −
L −
N
M

O
Q
P

...(15.37)

Fig. 15.22. Steady state conduction
through a hollow sphere.

Q t 1 t 2

R=th 4k rrr– r2 1
π 12

Q

dr
Element

Hollow sphere

t 2

Q (Heat flows radially
outwards, t > t ) 12

r 2

rr (^1) t 1

Free download pdf