dharm
\M-therm\Th15-3.pm5
824 ENGINEERING THERMODYNAMICS
ColdColdHotAnnulus
surrounding
the pipePipe( ) Flow arrangement.adAAreath 1th 2
tc 1tc 2q
dtcdththq 2( ) Temperature distribution.bdQ
tcq 1Hot fluidCold fluidFig. 15.39. Calculation of LMTD for a counter-flow heat exchanger.or dθ = – dQ
11
CChc
−
L
NM
O
QP ...(15.57)
Inserting the value of dQ from eqn. (15.55), we getdθ = – U dA (th – tc)^11
CChc−
L
NM
O
QP
= – U dA. θ
11
CChc−
L
NM
O
QP
or dθ
θ
= – U dA
11
CChc
−
L
N
M
O
QP
Integrating the above equation from A = 0 to A = A, we getln (θ 2 /θ 1 ) = – U. A11
CChc−
L
NM
O
QP ...(15.58)
Now, the total heat transfer rate between the two fluids is given by
θ = Ch (–) (–)tt Ctthh cc c 12 = 21 ...(15.59)or
(^112)
C
tt
h Q
= hh−
...[15.60 (a)]
or
(^121)
C
tt
c Q
= cc−
...[15.60 (b)]