TITLE.PM5

(Ann) #1

dharm
\M-therm\Th15-3.pm5


824 ENGINEERING THERMODYNAMICS


Cold

Cold

Hot

Annulus
surrounding
the pipe

Pipe

( ) Flow arrangement.a

dA

Area

th 1

th 2
tc 1

tc 2

q
dtc

dth

th

q 2

( ) Temperature distribution.b

dQ
tc

q 1

Hot fluid

Cold fluid

Fig. 15.39. Calculation of LMTD for a counter-flow heat exchanger.

or dθ = – dQ
11
CChc



L
N

M


O
Q

P ...(15.57)
Inserting the value of dQ from eqn. (15.55), we get

dθ = – U dA (th – tc)^11
CChc


L
N

M


O
Q

P


= – U dA. θ
11
CChc


L
N

M


O
Q

P


or dθ
θ
= – U dA
11
CChc

L
N


M


O
Q

P
Integrating the above equation from A = 0 to A = A, we get

ln (θ 2 /θ 1 ) = – U. A

11
CChc


L
N

M


O
Q

P ...(15.58)


Now, the total heat transfer rate between the two fluids is given by
θ = Ch (–) (–)tt Ctthh cc c 12 = 21 ...(15.59)

or


(^112)
C
tt
h Q
= hh−
...[15.60 (a)]
or
(^121)
C
tt
c Q
= cc−
...[15.60 (b)]

Free download pdf