HEAT TRANSFER 841dharm
\M-therm\Th15-4.pm5φdA 1
dφr sinθθ r
dθrdθr sin dθφdA = r sin d d 2 2 θθ φ(b) Illustration for evaluating area dA 2
Fig. 15.51. Radiation from an elementary surface.The solid angle subtended by dA 2 = dA
r2
2∴ The intensity of radiation, I =
dQ
dA dA
r12
1 22−
cosθ×...(15.82)where dQ1–2 is the rate of radiation heat transfer from dA 1 to dA 2.
It is evident from Fig. 15.51 (b) that,
dA 2 = r dθ (r sin θ dφ)
or dA 2 = r^2 sin θ.dθ.dφ ...(15.83)
From eqns. (15.82) and (15.83), we obtain
dQ1–2 = I dA 1. sin θ. cos θ. dθ. dφ
The total radiation through the hemisphere is given by
Q = I dA 1
φφπ
θθ π
θθθφ
==
==
zz 02
0(^2) sin cos dd
= 2π I dA 1
θ
θ π
=
z 0
(^2) sin θ cos θ dθ
= π I dA 1
θ
π
z= 0
(^2) 2 sin θ cos θ dθ
= π I dA 1
θ
π
z= 0
(^2) sin 2θ dθ
or Q = π I dA 1 ...(15.84)
Also Q = E.dA 1
∴ E dA 1 = π I dA 1
or E = πI
i.e., The total emissive power of a diffuse surface is equal to π times its intensity of radiation.