848 ENGINEERING THERMODYNAMICS
dharm
\M-therm\Th15-4.pm5
Fig. 15.54
In this case F1–2 = F2–3 = 1 ; and
A
A
r
r
1
2
1
2
5
10
== = 0.5
A
A
r
r
2
3
2
3
10
15
=== 0.67
∴
2 1000
100 100
1005
005
1 1005
005
05
1
4
2
4
πrLFHG JIK −FHGT IKJ
L
N
M
M
O
Q
P
P
F −
HG
I
KJ
++F −
HG
I
KJ
. ×
.
.
.
.
2
100
300
100
1005
005
1 1005
005
0
2 2
44
πrLFHGT IKJ −FHG IKJ
L
N
M
M
O
Q
P
P
F −
HG
I
KJ++
F −
HG
I
KJ×
.
.
.
.
.67
or
0 05 10000
29.4
081
32.73
.( −^44 ) )
= −
xx.1(
or (1000 – x^4 ) =
29.5 0.1
32.73 0.05
×
× (x
(^4) – 81) = 1.8(x (^4) – 81)
or 2.8x^4 = 10000 – 145.8 = 9854.2
or x =
9854.2
2.8
F
HG
I
KJ
1/ 4
= 7.7
or
T 2
100 = 7.7 or T^2 = 770 K
∴ Heat flow per m^2 area of cylinder 1,
Q 12 =
AT T
A
A
114 24
1
1
2
2
1
2
1 1 1
σ
ε
ε
ε
ε
()−
F −
HG
I
KJ
++−
F
HG
I
KJ
15.67^1000
100
770
100
10.05
0.05
1 10.05
0.05
0.5
44
× GFH IKJ −FHG IKJ
L
N
M
M
O
Q
P
P
F −
HG
I
KJ
++F −
HG
I
KJ
×
= 5.67 (10000 3515.3)
29.5
×− = 1246.4 W. (Ans.)
Example 15.30. Two concentric spheres 210 mm and 300 mm diameters with the space between
them evacuated are to be used to store liquid air (– 153°C) in a room at 27°C. The surfaces of the
spheres are flushed with aluminium (ε = 0.03) and latent heat of vaporization of liquid air is
209.35 kJ/kg. Calculate the rate of evaporation of liquid air. (M.U.)
Solution. Given : r 1 =
210
2
= 105 mm = 0.105 m ; r 2 =
300
2
= 150 mm = 0.15 m ;
T 1 = – 153 + 273 = 120 K ; T 2 = 27 + 273 = 300 K ; ε 1 = ε 2 = 0.03, hfg = 209.35 kJ/kg.