TITLE.PM5

(Ann) #1
COMPRESSIBLE FLOW 859

dharm
\M-therm\Th16-1.pm5

Dividing both sides by g, we get
p
ρg loge p +

V
g

2
2 + z = constant ...(16.6)
Eqn. (16.6) is the Bernoulli’s equation for compressible flow undergoing isothermal process.
(b) Bernoulli’s equation for adiabatic process :
In case of an adiabatic process,

pvγ = constant or
p
ργ
= constant = c 2 (say)

∴ργ =

p
c 2 or ρ =

p
c 2

F 1/
HG

I
KJ

γ

Hence z


dp
ρ =

dp
pc

c
p

dp c p dp
(/ )

() ()
2
1/^2

1/
1/^2

(^1) 1/ 1/
γ
γ
γ
== = γγ
zzz

= ()c 2 1/ pcp() () () ()cp
(^11)
2
1/
1
2 1/
1
1 1 1 1
γ γγ
γ
γ γ γγ
γ
γ
γ
γ
γ
−+ FHG − IKJ F −
HG
I
KJ
F−+
HG
I
KJ
L
N
M
M
M
M
M
O
Q
P
P
P
P
P


F −
HG
I
KJ



= γ
γ ργ
γ γ
γ

F
HG
I
KJ
F
HG
I
KJ
F −
HG
I
KJ
1
1/^1
p ()p FQ c 2 = p
HG
I
ργKJ


γ
γ
ρ
γ
γ γ
γ
γ

F
HG
I
KJ
F
H
G
G
G
I
K
J
J
× J
F −
HG
I
KJ
1
1/
1
1
p ()p


γ
γρ
γ
γρ
γ
γ
γ

F
HG
I
KJ



F
HG
I
KJ
FHG + − IKJ
11
11
()pp
Substituting the value of z
dp
p in eqn. (16.6), we get
γ
γρ−
F
HG
I
KJ



  • 12
    pV^2

  • gz = constant
    Dividing both sides by g, we get
    γ
    γρ−
    F
    HG
    I
    KJ


  • 12
    p^2
    g
    V
    g + z = constant ...(16.7)
    Eqn. (16.7) is the Bernoulli’s equation for compressible flow undergoing adiabatic process.
    Example 16.1. A gas with a velocity of 300 m/s is flowing through a horizontal pipe at a
    section where pressure is 78 kN/m^2 absolute and temperature 40°C. The pipe changes in diam-
    eter and at this section, the pressure is 117 kN/m^2 absolute. Find the velocity of the gas at this
    section if the flow of the gas is adiabatic. Take R = 287 J/kg K and γ = 1.4.
    (Punjab University)



Free download pdf