COMPRESSIBLE FLOW 859
dharm
\M-therm\Th16-1.pm5
Dividing both sides by g, we get
p
ρg loge p +
V
g
2
2 + z = constant ...(16.6)
Eqn. (16.6) is the Bernoulli’s equation for compressible flow undergoing isothermal process.
(b) Bernoulli’s equation for adiabatic process :
In case of an adiabatic process,
pvγ = constant or
p
ργ
= constant = c 2 (say)
∴ργ =
p
c 2 or ρ =
p
c 2
F 1/
HG
I
KJ
γ
Hence z
dp
ρ =
dp
pc
c
p
dp c p dp
(/ )
() ()
2
1/^2
1/
1/^2
(^1) 1/ 1/
γ
γ
γ
== = γγ
zzz
−
= ()c 2 1/ pcp() () () ()cp
(^11)
2
1/
1
2 1/
1
1 1 1 1
γ γγ
γ
γ γ γγ
γ
γ
γ
γ
γ
−+ FHG − IKJ F −
HG
I
KJ
F−+
HG
I
KJ
L
N
M
M
M
M
M
O
Q
P
P
P
P
P
F −
HG
I
KJ
−
= γ
γ ργ
γ γ
γ
−
F
HG
I
KJ
F
HG
I
KJ
F −
HG
I
KJ
1
1/^1
p ()p FQ c 2 = p
HG
I
ργKJ
γ
γ
ρ
γ
γ γ
γ
γ
−
F
HG
I
KJ
F
H
G
G
G
I
K
J
J
× J
F −
HG
I
KJ
1
1/
1
1
p ()p
γ
γρ
γ
γρ
γ
γ
γ
−
F
HG
I
KJ
−
F
HG
I
KJ
FHG + − IKJ
11
11
()pp
Substituting the value of z
dp
p in eqn. (16.6), we get
γ
γρ−
F
HG
I
KJ
- 12
pV^2 - gz = constant
Dividing both sides by g, we get
γ
γρ−
F
HG
I
KJ
12
p^2
g
V
g + z = constant ...(16.7)
Eqn. (16.7) is the Bernoulli’s equation for compressible flow undergoing adiabatic process.
Example 16.1. A gas with a velocity of 300 m/s is flowing through a horizontal pipe at a
section where pressure is 78 kN/m^2 absolute and temperature 40°C. The pipe changes in diam-
eter and at this section, the pressure is 117 kN/m^2 absolute. Find the velocity of the gas at this
section if the flow of the gas is adiabatic. Take R = 287 J/kg K and γ = 1.4.
(Punjab University)