COMPRESSIBLE FLOW 871
dharm
\M-therm\Th16-1.pm5For adiabatic process, the sonic velocity is given by,C = γγRT ρp
= Q
p RT
ρ
=
F
HGI
KJFor point O, C 0 = γρp 0
0or C 02 = γp 0
ρ 0Substituting the value ofγ
ρp 0
0= C 02 in eqn. (iii), we get1 +
V 02
2
(γ – 1) ×^1
02 01Cp
p
=F s
HGI
KJ−γ
γor, 1 +
V
C02
0
2 2 (γ – 1) =p
ps
01
F
HGI
KJ−γ
γ1 +M 02
2 (γ – 1) =p
ps
01
F
HGI
KJ−γ
γ
Q V
C(^0) M
2
02
= 02
F
HG
I
KJ
or,
p
p
s
0
1
F
HG
I
KJ
−γ
γ
=^1
1
2 0
+F −^2
HG
I
KJ
L
N
M
O
Q
P
γ M
or,
p
p
s
0
=^1
1
2 0
+F −^21
HG
I
KJ
L
N
M
O
Q
P
γ −
γ
γ
M ...(iv)
or, ps = p 0 1 1
2 0
+F −^21
HG
I
KJ
L
N
M
O
Q
P
γ −
γ
γ
M ...(16.17)
Eqn. (16.17) gives the value of stagnation pressure.
Compressibility correction factor :
If the right hand side of eqn. (16.17) is expanded by the binomial theorem, we get
ps = p 0 1
28
2
(^048)
2
0
4
0
L +++− 6
NM
O
QP
γγγγMM()M
= p 0 1
2
1
4
2
24
0
22
0
+++F −^4 +
HG
I
KJ
L
N
M
M
O
Q
P
P
γγMM M ...
or, ps = p 0 +
pM 002 M (^02) M
2 1 4 04
2
24
γγF ++− +
HG
I
KJ
... ...(16.18)
But, M 02 =
V
C
V
p
V
p
0
2
0
2
0
2
0
0
0
2
0
0
F
HG
I
KJ
γ
ρ
ρ
γ
Q C
p
0
2 0
0
F
HG
I
KJ
γ
ρ