COMPRESSIBLE FLOW 871
dharm
\M-therm\Th16-1.pm5
For adiabatic process, the sonic velocity is given by,
C = γγRT ρ
p
= Q
p RT
ρ
=
F
HG
I
KJ
For point O, C 0 = γρ
p 0
0
or C 02 = γ
p 0
ρ 0
Substituting the value of
γ
ρ
p 0
0
= C 02 in eqn. (iii), we get
1 +
V 02
2
(γ – 1) ×^1
02 0
1
C
p
p
=F s
HG
I
KJ
−γ
γ
or, 1 +
V
C
02
0
2 2 (γ – 1) =
p
p
s
0
1
F
HG
I
KJ
−γ
γ
1 +
M 02
2 (γ – 1) =
p
p
s
0
1
F
HG
I
KJ
−γ
γ
Q V
C
(^0) M
2
02
= 02
F
HG
I
KJ
or,
p
p
s
0
1
F
HG
I
KJ
−γ
γ
=^1
1
2 0
+F −^2
HG
I
KJ
L
N
M
O
Q
P
γ M
or,
p
p
s
0
=^1
1
2 0
+F −^21
HG
I
KJ
L
N
M
O
Q
P
γ −
γ
γ
M ...(iv)
or, ps = p 0 1 1
2 0
+F −^21
HG
I
KJ
L
N
M
O
Q
P
γ −
γ
γ
M ...(16.17)
Eqn. (16.17) gives the value of stagnation pressure.
Compressibility correction factor :
If the right hand side of eqn. (16.17) is expanded by the binomial theorem, we get
ps = p 0 1
28
2
(^048)
2
0
4
0
L +++− 6
NM
O
QP
γγγγMM()M
= p 0 1
2
1
4
2
24
0
22
0
+++F −^4 +
HG
I
KJ
L
N
M
M
O
Q
P
P
γγMM M ...
or, ps = p 0 +
pM 002 M (^02) M
2 1 4 04
2
24
γγF ++− +
HG
I
KJ
... ...(16.18)
But, M 02 =
V
C
V
p
V
p
0
2
0
2
0
2
0
0
0
2
0
0
F
HG
I
KJ
γ
ρ
ρ
γ
Q C
p
0
2 0
0
F
HG
I
KJ
γ
ρ