COMPRESSIBLE FLOW 891
dharm
\M-therm\Th16-2.pm5
Also,
T
Ts
2
=
p
ps
2
1
F
HG
I
KJ
−γ
γ
=
110
222 2
11
1
.
.4
F .4
HG
I
KJ
−
= 0.818
or, T 2 = 0.818 × 487.45 = 398.7 K
Sonic velocity at outlet section,
C 2 = γRT 2 = 1 4 287 398 7..×× = 400.25 m/s
∴ Velocity at outlet section, V 2 = M 2 × C 2 = 1.05 × 400.25 = 420.26 m/s. Ans.
Now, mass flow at the given section = mass flow at outlet section (exit)
......continuity equation
i.e., ρ 1 A 1 V 1 = ρ 2 A 2 V 2 or
p
RT
1
1
A 1 V 1 =
p
RT
2
2
A 2 V 2
∴ Flow area at the outlet section,
A 2 =
p AVT
TpV
1112
122
200 0 001 170 398 7
473 110 420 26
= ×××
××
..
. = 6.199 × 10
–4 m 2
Hence, A 2 = 6.199 × 10–4 m^2 or 619.9 mm^2. Ans.
(iv) Pressure (pt), temperature (Tt), velocity (Vt), and flow area (At) at throat of
the nozzle :
At throat, critical conditions prevail, i.e. the flow velocity becomes equal to the sonic veloc-
ity and Mach number attains a unit value.
From eqn. (16.22),
T
T
s
t
=^1
1
2
+F −^2
HG
I
KJ
L
N
M
O
Q
P
γ M
t
or,
487 45.
Tt =
1 14 1
2
+F − 12
HG
I
KJ
L ×
N
M
O
Q
P
.
= 1.2 or Tt = 406.2 K
Hence Tt = 406.2 K (or 133.2°C). Ans.
Also,
p
T
t
s
= T
T
t
s
F
HG
I
KJ
−
γ
γ 1
or
pt
222 2. =
406 2
487 45
1
. 11
.
.4
F .4
HG
I
KJ
− = 0.528
or, pt = 222.2 × 0.528 = 117.32 kN/m^2. Ans.
Sonic velocity (corresponding to throat conditions),
Ct = γRTt = 1 4 287 406 2..×× = 404 m/s
∴ Flow velocity, Vt = Mt × Ct = 1 × 404 = 404 m/s
By continuity equation, we have : ρ 1 A 1 V 1 = ρt AtVt
or, p
RT
1
1
A 1 V 1 =
p
RT
t
t
AtVt
∴ Flow area at throat, At =
pAVT
TpV
t
tt
111
1
200 0 001 170 406 2
473 117 32 404
= ×××
××
..
.
= 6.16 × 10–4 m^2
Hence, At = 6.16 × 10–4 m^2 or 616 mm^2 (Ans.)