Mathematical and Statistical Methods for Actuarial Sciences and Finance

(Nora) #1

142 F. D’Ippoliti et al.



  1. Black, F., Scholes, M.: The pricing of options and corporate liabilities. J. Pol. Econ. 81,
    637–654 (1973)

  2. Broadie, M., Kaya,O.: Exact simulation of option Greeks under stochastic vola ̈ tility
    and jump diffusion models. In: Ingalls, R.G., Rossetti, M.D., Smith, J.S., Peters, B.A.:
    Proceedings of the 2004 Winter Simulation Conference. (2004)

  3. Broadie, M., Kaya,O.: Exact simulation of stochastic volatility and other affine jump ̈
    diffusion processes. Oper. Res. 2, 217–231 (2006)

  4. D’Ippoliti, F., Moretto, E., Pasquali, S., Trivellato, B.: Option valuation in a stochastic
    bolatility jump-diffusion model. In: CNR-IMATI Technical Report2007 MI/4
    http://www.mi.imati.cnr.it/iami/papers/07-4.pdf(2007)

  5. Duffie, D., Pan, J., Singleton, K.: Transform analysis and asset pricing for sffine jump-
    diffusions. Econometrica 68, 1343–1376 (2000)

  6. Eraker, B., Johannes., M., Polson, N.: The impacts of jumps in volatility and returns. J.
    Finan. 58, 1269–1300 (2003)

  7. Hanson, F.B., Yan, G.: Option pricing for a stochastic-volatility jump-diffusion model
    with log-uniform jump-amplitudes. In: Proceedings of American Control Conference,
    2989–2994 (2006).

  8. Heston, S.L.: A closed-form solution for options with stochastic volatility with applica-
    tions to bond and currency options. Rev. Finan. Stud. 6, 327–343 (1993)

  9. Lamberton, D., Lapeyre B.: Introduction au Calcul Stochastique Applique ́`a la Finance.
    Second edition. Ellipse,Edition Marketing, Paris ( ́ 1997)

  10. Mania, M., Tevzadze, R., Toronjadze, T.: Mean-variance hedging under partial informa-
    tion. SIAM Journal on Control and Optimization, 47, 2381–2409 (2008)

  11. Pan, J.: The jump-risk premia implicit in option: evidence from an integrated zime-series
    study. J. Finan. Econ. 63, 3–50 (2002)

  12. Stein, E.M., Stein, J.C.: Stock price distributions with stochastic volatility: an analytic
    approach. Rev. Finan. Stud. 4, 727–752 (1991)

  13. Willard, G.A.: Calculating prices and sensitivities for path-dependent derivatives securi-
    ties in multifactor models. J. Deriv. 1,45–61 (1997)

Free download pdf