Mathematical and Statistical Methods for Actuarial Sciences and Finance

(Nora) #1

244 Marcella Niglio and Cira Perna



  1. Lanne, M., Saikkonen, P.: Modeling the U.S. short-term interest rate by mixture autore-
    gressive processes. J. Finan. Econ. 1, 96–125 (2003)

  2. Matzner-Løber, E., De Gooijer, J.: Nonparametric forecasting: a comparison of three
    kernel-based methods. Commun. Stat.: Theory Methods 27, 1593–1617 (1998)

  3. Politis D.N., Romano, J.P., Wolf, M.: Subsampling. Springer-Verlag, New York (1999)

  4. Robinson, P.M.: Nonparametric estimators for time series. J. Time Ser. Anal. 4, 185–207
    (1983)

  5. Tjøstheim, D., Auestad, H.: Nonparametric identification of nonlinear time series: selecting
    significant lags. J. Am. Stat. Assoc. 89, 1410–1419 (1994)

  6. Tong, H.: Nonlinear Time Series: A Dynamical System Approach. Oxford University
    Press, Oxford (1990)

  7. Tong , H., Moeannadin, R.: On multi-stepnon-linear least squares prediction. Statistician
    37, 101–110 (1981)

  8. Tsay, R.: Testing and modelling threshold autoregressive processes. J. Am. Stat. Assoc.
    84, 231–240 (1989)

  9. Vilar-Fern`andez, J.M., Cao, R.: Nonparametric forecasting in time series. A comparative
    study. Commun. Stat.: Simul. Comput. 36, 311–334 (2007)

Free download pdf