Mathematical and Statistical Methods for Actuarial Sciences and Finance

(Nora) #1

282 Gianni Pola


References



  1. Abate, A.: Probabilistic Reachability for Stochastic Hybrid Systems: Theory, Computa-
    tions, and Applications. PhD Thesis. EECS Department, University of California, Berke-
    ley (2007)

  2. Agarwal, V., Naik, N.: Risks and portfolio decisions involving hedge funds. Ref. Finan.
    Stud. 17, 63–98 (1990)

  3. Amin, G., Kat, H.: Stocks, bonds and hedge funds: not a free lunch! J. Portfolio Man. 29
    4, 113–120 (2003)

  4. Barberis, N.: Investing for the Long Run when Returns are Predictable. J. Finan. 55,
    225–264 (2000)

  5. Bertrand, P., Prigent, J. L.: Portfolio Insurance Strategies: OBPI Versus CPPI. University
    of CERGY Working Paper No. 2001–30. GREQAM Working Paper

  6. Bertsekas, D.P.: Dynamic Programming and Optimal Control, 2nd Edn, Vols. 1 and 2.
    Athena Scientific, Belmont, MA (2001)

  7. Brennan, M. J., Xia, Y.: Dynamic Asset Allocation under Inflation. The Journal of Finance
    57(3), 1201–1238 (2002)

  8. Buckley, I., Saunders, D., Seco, L.: Portfolio optimization when asset returns have the
    Gaussian mixture distribution. Eur. J. Oper. Res. 185, 1434–1461 (2008)

  9. Chan, K. C.: On the Contrarian Investment Strategy. Journal of Business 61, 147–163
    (1988)

  10. Cremers, J. H., Kritzman, M., Page, S.: Optimal Hedge Fund Allocations: Do Higher
    Moments the Matter? The Journal of Portfolio Management 31(3), 70–81 (2005)

  11. DeSouza, C., Gokcan, S.: Allocation Methodologies and Customizing Hedge Fund Multi-
    Manager Multi-Strategy Products. Journal of Alternative Investments 6(4), 7–21 (2004)

  12. Favre-Bulle, A., Pache, S.: The Omega Measure: Hedge Fund Portfolio Optimization.
    MBF master’s thesis. University of Lausanne (2003)

  13. Hwang, S., Satchell, S.: Modeling Emerging Risk Premia Using Higher Moments. Int. J.
    Finan. Econ. 4(4), 271–296 (1999)

  14. Lintner, J.: The Valuation of Risk Assets and the Selection of Risky Investments in Stock
    Portfolio and Capital Budgets. Rev. Econ. Stat. 47(1), 13–37 (1965)

  15. Markowitz, H.: Portfolio Selection. The Journal of Finance 7(1), 77–91 (1952)

  16. Martellini, L., Ziemann, V.: Extending Black-Litterman Analysis Beyond the Mean-
    Variance Framework. The Journal of Portfolio Management 33(4), 33–44 (2007)

  17. Merton, R. C.: Lifetime Portfolio Selection Under Uncertainty: the Continuous–Time
    Case. Review of Economics and Statistics 51, 247–257 (1969)

  18. Pola, G., Lygeros, J., Di Benedetto, M. D.: Invariance in Stochastic Dynamical Systems.
    17th International Symposium on Mathematical Theory of Network and Systems (MTNS
    2006). Kyoto, Japan, July 24th – 28th (2006)

  19. Pola, G., Pola G.: Optimal Dynamic Asset Allocation: A Stochastic Invariance Approach.
    45th IEEE Conference on Decision and Control (CDC 2006). San Diego, USA, December
    12nd – 25th, pp. 2589–2594 (2006)

  20. Samuelson, P. A.: Lifetime Portfolio Selection by Dynamic Stochastic Programming.
    Review of Economics and Statistics 51, 239–246 (1969)

  21. Sharpe, W.: Capital Asset Prices: A Theory of Market Equilibriumunder Conditions of
    Risk. Journal of Finance 19(3), 425–442 (1964)

  22. Sornette, D., Andersen, J. V., Simonetti, P.: Portfolio Theory for Fat Tails. International
    Journal of Theoretical and Applied Finance 3(3), 523–535 (2000)

  23. Xia, Y.: Learning about Predictability: the effect of parameter uncertainty ondynamic
    asset allocation. The Journal of Finance 56(1), 205–246 (2001)

Free download pdf