Mathematical and Statistical Methods for Actuarial Sciences and Finance

(Nora) #1
Transformation kernel estimation of insurance claim cost distributions 51

Acknowledgement.The Spanish Ministry of Education and Science support SEJ2007-63298
is acknowledged. We thank the reviewers for helpful comments.


References



  1. Azzalini, A.: A note on the estimation of a distribution function and quantiles by kernel
    method. Biometrika 68, 326–328 (1981)

  2. Bolanc ́e, C., Guill ́en, M., Nielsen, J.P.: Kernel density estimation of actuarial loss functions.
    Ins. Math. Econ. 32, 19–36 (2003)

  3. Bolanc ́e, C., Guill ́en, M., Nielsen, J.P.: Inverse Beta transformation in kernel density
    estimation. Stat. Prob. Lett. 78, 1757–1764 (2008)

  4. Buch-Larsen, T., Guillen, M., Nielsen, J.P., Bolance, C.: Kernel density estimation for ́
    heavy-tailed distributions using the Champernowne transformation. Statistics 39, 503–
    518(2005)

  5. Chavez-Demoulin, V., Davison, P.: Generalized additive modelling of sample extremes.
    Appl. Stat. 54, 207–222 (2005)

  6. Chavez-Demoulin, V., Embrechts, P.: Smooth extremal models in finance and insurance.
    J. Risk Ins. 71, 183–199 ((2004)

  7. Clements, A.E., Hurn, A.S., Lindsay, K.A.: M ̈obius-like mappings and their use in kernel
    density estimation. J. Am. Stat. Assoc. 98, 993–1000 (2003)

  8. Coles, S.: An Introduction to Statistical Modeling of Extreme Values. Springer, London
    (2001)

  9. Cooray, K., Ananda, M.M.A.: Modeling actuarial data with a composite lognormal-Pareto
    model. Scand. Act. J. 5, 321–334 (2005)

  10. Dutta, K., Perry, J.: A tale of tails: an empirical analysis of loss distribution models for esti-
    mating operational risk capital. FRB of Boston Working Paper No. 06-13 (2006) Available
    at SSRN: http://ssrn.com/abstract=918880

  11. Embrechts, P., Kl ̈uppelberg, C., Mikosch, T.: Modelling Extremal Events. Springer, Lon-
    don (1999)

  12. Hoaglin, D.C.: g-and-h distributions. In: Kotz, S., Johnson, N.L. (eds.) Encyclopedia of
    Statistical Sciences, pp. 298–301, vol. 3. Wiley, New York (1983)

  13. Reiss, R.D.: Nomparametric estimation of smooth distribution functions. Scand. J. Stat.
    8, 116–119 (1981)

  14. Reiss, R.D., Thomas, M.: Statistical Analysis of Extreme Values: with Applications to
    Insurance, Finance, Hydrology and other Fields, 2nd Edition. Birkh ̈auser (2001)

  15. Silverman, B.W.: Density Estimation for Statistics and Data Analysis. Chapman & Hall,
    London (1986)

  16. Swanepoel, J.W.H., Van Graan F.C.: A new kernel distribution function estimator based
    on a non-parametric transformation of the data. Scand. J. Stat. 32, 551–562 (2005)

  17. Terrell, G.R.: The maximal smoothing principle in density estimation. J. Am. Stat. Assoc.
    85, 270–277 (1990)

  18. Terrell, G.R., Scott, D.W.: Oversmoothed nonparametric density estimates. J. Am. Stat.
    Assoc. 80, 209–214 (1985)

  19. Wand, M.P., Jones, M.C.: Kernel Smoothing. Chapman & Hall, London (1995)

  20. Wand, P., Marron, J.S., Ruppert, D.: Transformations in density estimation. J. Am. Stat.
    Assoc. 86, 343–361 (1991)

Free download pdf