Mathematical and Statistical Methods for Actuarial Sciences and Finance

(Nora) #1
Some classes of multivariate risk measures 73

References



  1. Balbas, A., Guerra, P.J.: Generalized vector risk functions. Working Paper no. 06–67, ́
    http://docubib.uc3m.es (2006)

  2. Bentahar, I.: Tail conditional expectation for vector valued risks. Discussion paper,
    http://sfb649.wiwi.hu-berlin.de (2006)

  3. Burgert, C., R ̈uschendorf, L.: Consistent risk measures for portfolio vectors. Ins. Math.
    Econ. 38, 289–297 (2006)

  4. Denneberg, D.: Distorted probabilities and insurance premiums. Meth. Oper. Res. 63, 3–5
    (1990)

  5. Denuit, M., Dhaene, J., Goovaerts, M., Kaas, R.: Actuarial Theory for Dependent Risks.
    Measures, Orders and Models. John Wiley (2005)

  6. Edwards, H., Mikusinski, P., Taylor, M.D.: Measures of concordance determined byD 4 -
    invariant copulas. J. Math. Math. Sci. 70, 3867–3875 (2004)

  7. Jouini, E., Meddeb, M., Touzi, N.: Vector valued coherent risk measures. Finan. Stoch. 4,
    531–552 (2004)

  8. Muller, A.: Stop-loss order for portfolios of dependent risks. Ins. Math. Econ. 21, 219–223 ̈
    (1997)

  9. Ruschendorf, L.: Law invariant convex risk measures for portfolio vectors. Stat. Decisions ̈
    24, 97–108 (2006)

  10. Scarsini, M.: On measures of concordance. Stochastica 8, 201–218 (1984)

  11. Tchen, A.H.: Inequalities for distributions with given marginales. Ann. Prob. 8,814–827
    (1980)

  12. Wang, S.: Premium calculation by transforming the layer premium density. Astin Bull. 26,
    71–92 (1996)

  13. Wang, S., Young, V.R., Panjer, H.H.: Axiomatic characterization of insurance pricing. Ins.
    Math. Econ. 21, 173–183 (1997)

Free download pdf