Mathematical Methods for Physics and Engineering : A Comprehensive Guide

(Darren Dugan) #1

30.9 IMPORTANT CONTINUOUS DISTRIBUTIONS


− 6 − 4 − 2 234 6 8 10 12


0. 1


0. 2


0. 3


0. 4


σ=1

σ=2

σ=3

μ=3

Figure 30.13 The Gaussian or normal distribution for meanμ=3and
various values of the standard deviationσ.

− 4 − 2 0 −^2 −^1 ay^2

1


a 2 4

z z

φ(z)
Φ(z)

Φ(a)

Φ(a)

0. 2


0. 4


0. 6


0. 8


0. 1


0. 2


0. 3


0. 4


Figure 30.14 On the left, the standard Gaussian distributionφ(z); the shaded
area gives Pr(Z<a)=Φ(a). On the right, the cumulative probability function
Φ(z) for a standard Gaussian distributionφ(z).

distribution as


F(x)=Pr(X<x)=

1
σ


2 π

∫x

−∞

exp

[

1
2

(u−μ

σ

) 2 ]
du,
(30.107)

whereuis a (dummy) integration variable. Unfortunately, this (indefinite) integral


cannot be evaluated analytically. It is therefore standard practice to tabulate val-


ues of the cumulative probability function for the standard Gaussian distribution


(see figure 30.14), i.e.


Φ(z)=Pr(Z<z)=

1

2 π

∫z

−∞

exp

(

u^2
2

)
du. (30.108)
Free download pdf