30.9 IMPORTANT CONTINUOUS DISTRIBUTIONS
− 6 − 4 − 2 234 6 8 10 12
0. 1
0. 2
0. 3
0. 4
σ=1σ=2σ=3μ=3Figure 30.13 The Gaussian or normal distribution for meanμ=3and
various values of the standard deviationσ.− 4 − 2 0 −^2 −^1 ay^21
a 2 4z zφ(z)
Φ(z)Φ(a)Φ(a)0. 2
0. 4
0. 6
0. 8
0. 1
0. 2
0. 3
0. 4
Figure 30.14 On the left, the standard Gaussian distributionφ(z); the shaded
area gives Pr(Z<a)=Φ(a). On the right, the cumulative probability function
Φ(z) for a standard Gaussian distributionφ(z).distribution as
F(x)=Pr(X<x)=1
σ√
2 π∫x−∞exp[
−1
2(u−μσ) 2 ]
du,
(30.107)whereuis a (dummy) integration variable. Unfortunately, this (indefinite) integral
cannot be evaluated analytically. It is therefore standard practice to tabulate val-
ues of the cumulative probability function for the standard Gaussian distribution
(see figure 30.14), i.e.
Φ(z)=Pr(Z<z)=1
√
2 π∫z−∞exp(
−u^2
2)
du. (30.108)