10.9 CYLINDRICAL AND SPHERICAL POLAR COORDINATES
∇Φ=
∂Φ
∂rˆer+1
r∂Φ
∂θeˆθ+1
rsinθ∂Φ
∂φˆeφ∇·a =1
r^2∂
∂r(r^2 ar)+1
rsinθ∂
∂θ(sinθaθ)+1
rsinθ∂aφ
∂φ∇×a =1
r^2 sinθ∣∣
∣
∣∣
∣
∣∣
eˆr reˆθ rsinθeˆφ
∂
∂r∂
∂θ∂
∂φ
ar raθ rsinθaφ∣∣
∣
∣∣
∣
∣∣
∇^2 Φ=
1
r^2∂
∂r(
r^2∂Φ
∂r)
+
1
r^2 sinθ∂
∂θ(
sinθ∂Φ
∂θ)
+
1
r^2 sin^2 θ∂^2 Φ
∂φ^2Table 10.3 Vector operators in spherical polar coordinates; Φ is a scalar field
andais a vector field.xyzrrdθφdφdφdrrsinθ
rsinθdφrsinθdφ
θ
dθFigure 10.10 The element of volume in spherical polar coordinates is given
byr^2 sinθdrdθdφ.we can rewrite the first term on the RHS as follows:
1
r^2∂
∂r(
r^2∂Φ
∂r)
=1
r∂^2
∂r^2(rΦ),which can often be useful in shortening calculations.