10.10 GENERAL CURVILINEAR COORDINATES
zxi yjkO
P
u 2 =c 2u 1 =c 1u 3 =c 3u 1u 2u 3ˆ 1
ˆ 2
ˆ 3
ˆe 1
eˆ 2ˆe 3Figure 10.11 General curvilinear coordinates.factors for cylindrical and spherical polar coordinates were
for cylindrical polars hρ=1, hφ=ρ, hz=1,
for spherical polars hr=1, hθ=r, hφ=rsinθ.Although the vectorse 1 ,e 2 ,e 3 form a perfectly good basis for the curvilinearcoordinate system, it is usual to work with the corresponding unit vectorseˆ 1 ,eˆ 2 ,
ˆe 3. For an orthogonal curvilinear coordinate system these unit vectors form an
orthonormal basis.
An infinitesimal vector displacement in general curvilinear coordinates is givenby, from (10.19),
dr=∂r
∂u 1du 1 +∂r
∂u 2du 2 +∂r
∂u 3du 3 (10.55)=du 1 e 1 +du 2 e 2 +du 3 e 3 (10.56)=h 1 du 1 eˆ 1 +h 2 du 2 eˆ 2 +h 3 du 3 ˆe 3. (10.57)Inthecaseoforthogonalcurvilinear coordinates, where theˆeiare mutually
perpendicular, the element of arc length is given by
(ds)^2 =dr·dr=h^21 (du 1 )^2 +h^22 (du 2 )^2 +h^23 (du 3 )^2. (10.58)The volume element for the coordinate system is the volume of the infinitesimal
parallelepiped defined by the vectors (∂r/∂ui)dui=duiei=hiduiˆei,fori=1, 2 ,3.