Mathematical Methods for Physics and Engineering : A Comprehensive Guide

(Darren Dugan) #1

PDES: GENERAL AND PARTICULAR SOLUTIONS


(b)y

∂u
∂x

−x

∂u
∂y

=3x, u(1,0) = 2;

(c) y^2

∂u
∂x

+x^2

∂u
∂y

=x^2 y^2 (x^3 +y^3 ), no boundary conditions.

20.7 Solve


sinx

∂u
∂x

+cosx

∂u
∂y

=cosx

subject to (a)u(π/ 2 ,y)=0and(b)u(π/ 2 ,y)=y(y+1).
20.8 A functionu(x, y)satisfies


2

∂u
∂x

+3


∂u
∂y

=10,


and takes the value 3 on the liney=4x. Evaluateu(2,4).
20.9 Ifu(x, y)satisfies


∂^2 u
∂x^2

− 3


∂^2 u
∂x∂y

+2


∂^2 u
∂y^2

=0


andu=−x^2 and∂u/∂y=0fory=0andallx, find the value ofu(0,1).
20.10 Consider the partial differential equation


∂^2 u
∂x^2

− 3


∂^2 u
∂x∂y

+2


∂^2 u
∂y^2

=0. (∗)


(a) Find the functionu(x, y) that satisfies (∗) and the boundary conditionu=
∂u/∂y=1wheny=0forallx. Evaluateu(0,1).
(b) In which region of thexy-plane wouldube determined if the boundary
condition wereu=∂u/∂y=1wheny=0forallx>0?

20.11 In those cases in which it is possible to do so, evaluateu(2,2), whereu(x, y)is
the solution of


2 y

∂u
∂x

−x

∂u
∂y

=xy(2y^2 −x^2 )

that satisfies the (separate) boundary conditions given below.

(a) u(x,1) =x^2 for allx.
(b)u(x,1) =x^2 forx≥ 0.
(c) u(x,1) =x^2 for 0≤x≤ 3.
(d)u(x,0) =xforx≥ 0.
(e) u(x,0) =xfor allx.
(f) u(1,


10) = 5.


(g) u(


10 ,1) = 5.


20.12 Solve


6

∂^2 u
∂x^2

− 5


∂^2 u
∂x∂y

+


∂^2 u
∂y^2

=14,


subject tou=2x+1 and∂u/∂y=4− 6 x, both on the liney=0.
20.13 By changing the independent variables in the previous exercise to


ξ=x+2y and η=x+3y,
show that it must be possible to write 14(x^2 +5xy+6y^2 )intheform

f 1 (x+2y)+f 2 (x+3y)−(x^2 +y^2 ),
and determine the forms off 1 (z)andf 2 (z).
Free download pdf