"Introduction". In: Fiber-Optic Communication Systems

(Brent) #1
178 CHAPTER 4. OPTICAL RECEIVERS

4.16Derive an expression for the intensity-noise-induced power penalty of ap–i–n
receiver by taking into account a finite extinction ratio. Shot-noise and intensity-
noise contributions can both be neglected compared with the thermal noise in the
off state but not in the on state.
4.17Use the result of Problem 4.16 to plot the power penalty as a function of the
intensity-noise parameterrI[see Eq. (4.6.6) for its definition] for several values
of the extinction ratio. When does the power penalty become infinite? Explain
the meaning of an infinite power penalty.
4.18Derive an expression for the timing-jitter-induced power penalty by assuming a
parabolic pulse shapeI(t)=Ip( 1 −B^2 t^2 )and a Gaussian jitter distribution with a
standard deviationτ(RMS value). You can assume that the receiver performance
is dominated by thermal noise. Calculate the tolerable value ofBτthat would
keep the power penalty below 1 dB.

References


[1] S. D. Personick,Bell Syst. Tech. J. 52 , 843 (1973); 52 , 875 (1973).
[2] T. P. Lee and T. Li, inOptical Fiber Telecommunications I, S. E. Miller and A. G.
Chynoweth, Eds., Academic Press, San Diego, CA, 1979, Chap. 18.
[3] R. G. Smith and S. D. Personick, inSemiconductor Devices for Optical Communications,
H. Kressel, Ed., Springer, New York, 1980.
[4] S. R. Forrest, inOptical Fiber Telecommunications II, S. E. Miller and I. P. Kaminow,
Eds., Academic Press, San Diego, CA, 1988, Chap. 14.
[5] B. L. Kasper, inOptical Fiber Telecommunications II, S. E. Miller and I. P. Kaminow,
Eds., Academic Press, San Diego, CA, 1988, Chap. 18.
[6] S. B. Alexander,Optical Communication Receiver Design, Vol. TT22, SPIE Press,
Bellingham, WA, 1995.
[7] R. J. Keyes,Optical and Infrared Detectors, Springer, New York, 1997.
[8] G. J. Brown, Ed.,Photodetectors Materials & Devices III, SPIE Press, Bellingham, WA,
1998.
[9] M. J. Digonnet, Ed.,Optical Devices for Fiber Communication, SPIE Press, Bellingham,
WA, 1999.
[10] R. S. Tucker, A. J. Taylor, C. A. Burrus, G. Eisenstein, and J. M. Westfield,Electron.
Lett. 22 , 917 (1986).
[11] K. Kishino, S.Unl ̈ ̈ u, J. I. Chyi, J. Reed, L. Arsenault, and H. Morkoc ̧,IEEE J. Quantum
Electron. 27 , 2025 (1991).
[12] C. C. Barron, C. J. Mahon, B. J. Thibeault, G. Wang, W. Jiang, L. A. Coldren, and J. E.
Bowers,Electron. Lett. 30 , 1796 (1994).
[13] I.-H. Tan, J. Dudley, D. I. Babi ́c, D. A. Cohen, B. D. Young, E. L. Hu, J. E. Bowers, B. I.
Miller, U. Koren, and M. G. Young,IEEE Photon. Technol. Lett. 6 , 811 (1994).
[14] I.-H. Tan, C.-K. Sun, K. S. Giboney, J. E. Bowers E. L. Hu, B. I. Miller, and R. J. Kapik,
IEEE Photon. Technol. Lett. 7 , 1477 (1995).
[15] Y.-G. Wey, K. S. Giboney, J. E. Bowers, M. J. Rodwell, P. Silvestre, P. Thiagarajan, and
G. Robinson,J. Lightwave Technol. 13 , 1490 (1995).
[16] K. Kato, S. Hata, K. Kwano, J. Yoshida, and A. Kozen,IEEE J. Quantum Electron. 28 ,
2728 (1992).
Free download pdf