216 HANDBOOK OF ELECTRICAL ENGINEERING
iii) Hence the voltage across the capacitance is,
Vc=Vs−Vsc
= 19456. 7 +j 0. 0 − 508. 35 −j 336. 28
= 18948. 35 −j336.28 volts/phase
The charging currentIcfor the capacitance is,
Ic=
Vc
Xc
=
18949. 35 −j 336. 28
−j 530. 52
= 0. 634 +j35.716 amps
DeductIcfromIsto findIr,
Ir=Is−Ic= 317. 92 −j 80. 691 − 0. 634 −j 35. 716
= 317. 286 −j116.41 amps
The volt-drop in the right-hand side of the cable isVcr,
Vcr=Ir
(
R
2
+j
X 1
2
)
=( 317. 286 −j 116. 41 )( 1. 25 +j 1. 375 )
= 556. 671 +j 290 .756 volts/phase
iv) Hence the voltage received at the load is,
Vr=Vc−Vcr
= 18948. 35 −j 336. 28 − 556. 671 −j 290. 756
= 18391. 68 −j 627 .04 volts/phase
|Vr|=18402.36 volts/phase
The total actual volt-drop
V=
|Vs|−|Vr|
|Vs|
× 100
=
( 19456. 7 − 18402. 36 ) 100
19456. 7
= 5 .419%
The receiving end volt-drop with respect to the nominal system voltage isVn,
Vn=
|Vn|−|Vr|
|Vn|