218 HANDBOOK OF ELECTRICAL ENGINEERING
The charging current at the sending endIcsis,
Ics=
Vs
2 Xc
=
19456. 7
−j 1061. 04
=+j 18 .337 amps
DeductIcsfromIsto obtainIsr,
Isr=Is−Ics= 317. 85 −j 80. 713 −j 18. 337
= 317. 85 −j 99. 05
The volt-dropVsrin the series impedance is,
Vsr=Isr(R+jX 1 )=( 317. 85 −j 99. 05 )( 2. 5 +j 2. 75 )
= 794. 63 +j 874. 09 −j 247. 625 + 272. 39
= 1067. 02 +j626.46 volts/phase
Hence the voltage received at the load is,
Vr=Vs−Vsr
= 19456. 7 − 1067. 02 −j 626. 46
= 18389. 68 −j 626. 46
|Vr|=18400.35 volts/phase
The total actual volt-drop
V=
|Vs|−|Vr|
|Vs|
× 100
=
( 19456. 7 − 18400. 35 ) 100
19456. 7
= 5 .429%
The receiving end volt-drop with respect to the nominal system voltage isVn,
Vn=
|Vn|−|Vr|
|Vn|
× 100
=
( 19052. 6 − 18400. 35 ) 100
19052. 6
= 3 .423%
c) Neglecting the shunt capacitive reactance.
The method of 9.4.3.1 can be used for a long cable to compare the results and accuracy
obtained. The current in the load based on the nominal system voltage isI,
I=
SL× 106
√
3 Vn
=349.91 amps/phase