498 HANDBOOK OF ELECTRICAL ENGINEERING
Similarly (20.25) becomes:
Vd1
Vq1
0
0
=
R 1 +jω
ωnXL 1 0 jω
ωnXm 00 R 1 +jω
ωnXL 1 0 jω
ωnXmjω
ωnXmωr
ωnXm R 2 +jω
ωnXL 2
ωr
ωnXm−
ωr
ωnXm jω
ωnXm −ωr
ωnXm R 2 +jω
ωnXL 2
Id1
Iq1
Id2
Iq2
(^20.^31 )
WhereVd1,Vq1,Id1,Iq1,Id2andIq2are the phasor equivalents of their instantaneous values,
XL 1 is the total reactance of the primary andXL 2 that of the secondary. For the balanced three-phase
operation of the induction motor the following discussion applies.
Vd1
−jVd1
0
0
=
R 1 +jω
ωnXL 1 0 jω
ωnXm 00 R 1 +jω
ωnXL 1 0 jω
ωnXmjω
ωnXmωr
ωnXm R 2 +jω
ωnXL 2
ωr
ωnXm−
ωr
ωnXm jω
ωnXm −ωr
ωnXm R 2 +jω
ωnXL 2
Id1
−jId1
Id2
−jId2
( 20. 32 )
Consider the first and third rows in (20.32), and define the rotor slip speed assω=ω−ωr.The
comments following (20.25) regarding pairs of equations also apply here.
These two rows become:-Vd1=[
R 1 +jω
ωnXL 1
]
Id1+jω
ωnXmId2 (20.33)0 =
sω
ωnXmId1+[
R 2 +jsω
ωnXL 2
]
Id2 (20.34)Divide the secondary equation by the slips:-
0 =jω
ωnXmId1+[
R 2
s+jω
ωnXL 2
]
Id2 ( 20. 35 )The equations (20.33) and (20.35) represent the familiar stationary coupled circuit shown in
Figure 20.3.
The magnitude of the axes variables is equal due to the symmetry of the winding construction,
as shown in (20.32). Hence|Vq1|=|Vd1|,|Iq1|=|Id1|and|Iq2|=|Id2|. The relationship between