30 HANDBOOK OF ELECTRICAL ENGINEERING
Therefore,
ηp= 0. 32 =
1223 ( 1. 0 − 0. 51796 )ηc( 0. 86 )− 298 ( 1. 93063 − 1. 0 )
1223 ηc− 298 ( 1. 93063 − 1. 0 +ηc)
Transposing forηcresults inηc= 0 .894. Hence the compressor efficiency would be 89.4%.
2.2.2 Maximum work done on the generator
If the temperaturesT 2 eandT 4 eare used in (2.11) to compensate for the efficiencies of the compressor
and turbine, then it is possible to determine the maximum power output that can be obtained as a
function of the pressure ratiorp.
The revised turbine work doneUteis,
Ute=Cp(T 3 −T 4 )ηtkJ/kg ( 2. 21 )
The revised compressor work doneUceis,
Uce=Cp(T 2 −T 1 )
1
ηc
kJ/kg ( 2. 22 )
The revised heat input from the fuelUfeis,
Ufe=Cp(T 3 −T 2 e)kJ/kg ( 2. 23 )
where,
T 2 e=T 1
(
rpβ− 1 +ηc
ηc
)
From (2.19),
T 4 =T 3 rpδ ( 2. 24 )
and
T 2 =T 1 rpβ ( 2. 25 )
Substituting forT 2 ,T 2 eandT 4 gives the resulting output work doneUouteto be,
Uoute=Ute−Uce=Cp(T 3 −T 3 rpδ)ηt−Cp
(
T 1 rpβ−T 1
ηc
)
=Cp
[
T 3 ( 1 −rδ)ηt−
T 1
ηc
(rpβ− 1 )
]
kJ/kg (2.26)
To find the maximum value ofUoutedifferentiateUoutewith respect toγpand equate the result
to zero. The optimum value ofγpto give the maximum value ofUouteis,
rpmax=
(
T 1
T 3 ηcηt
)d
( 2. 27 )