SYNCHRONOUS GENERATORS AND MOTORS 71
Where,
Pr 1 =Vsinδ(EqXq)+
V^2
2
sin 2δ(Xd−Xq)
Pr 2 =Vcosδ(EqRa)−V^2 Ra
Qr 1 =Vcosδ(EqXq)
Qr 2 =Vsinδ(−EqRa)−V^2 (Xdsin^2 δ+Xqcos^2 δ)
DEN=XdXq+Ra^2
The sending-end variables become,
PS=IEqcos(δ+φ)
QS=IEqsin(δ+φ)
3.5.3 A simpler case of a salient pole generator
Most practical generators have an armature resistanceRathat is much less in value than the syn-
chronous reactancesXdandXq. Consequently the equations in sub-section 3.5.2 can be further
simplified without incurring a noticeable error. They become,
Vd=Vsinδ
Vq=Vcosδ
Eq=E
Id=−Isin(φ+δ)
Iq=Icos(φ+δ)
Id=
Eq−Vq
Xd
Iq=
Vd
Xq
Pr=
Pr 1 +Pr 2
DEN
Qr=
Qr 1 +Qr 2
DEN
Where,
Pr 1 =Vsinδ(EqXq)+
V^2
2
sin^2 δ(Xd−Xq)
Pr 2 = 0
Qr 1 =Vcosδ(EqXq)