Social Media Mining: An Introduction

(Axel Boer) #1

P1: WQS Trim: 6.125in×9.25in Top: 0.5in Gutter: 0.75in
CUUS2079-06 CUUS2079-Zafarani 978 1 107 01885 3 January 13, 2014 17:15


156 Community Analysis

SPECTRAL The solution to this problem is the top eigenvectors ofL.^1 GivenL, the
CLUSTERING topkeigenvectors corresponding to the smallest eigen values are computed
and used asXˆ, and thenk-means is run on Xˆ to extract communities
memberships (X). The first eigenvector is meaningless (why?); hence, the
rest of the eigenvectors (k−1) are used ask-means input.

Example 6.3.Consider the graph in Figure6.8. We find two communities
in this graph using spectral clustering (i.e., k= 2 ). Then, we have

D=diag(2, 2 , 4 , 4 , 4 , 4 , 4 , 3 ,1). (6.16)

The adjacency matrix A and the unnormalized laplacian L are

A=



⎢⎢


⎢⎢


⎢⎢


⎢⎢


⎢⎢


⎢⎢


⎢⎢


⎢⎢


⎢⎢


⎢⎢



011000000


101000000


110110000


001011100


001101100


000110110


000111010


000001101


000000010



⎥⎥


⎥⎥


⎥⎥


⎥⎥


⎥⎥


⎥⎥


⎥⎥


⎥⎥


⎥⎥


⎥⎥



, (6.17)


L=D−A=



⎢⎢


⎢⎢


⎢⎢


⎢⎢


⎢⎢


⎢⎢


⎢⎢


⎢⎢


⎢⎢


⎢⎢



2 − 1 − 1000000


− 12 − 1000000


− 1 − 14 − 1 − 10000


00 − 14 − 1 − 1 − 100


00 − 1 − 14 − 1 − 100


000 − 1 − 14 − 1 − 10


000 − 1 − 1 − 14 − 10


00000 − 1 − 13 − 1


0000000 − 11



⎥⎥


⎥⎥


⎥⎥


⎥⎥


⎥⎥


⎥⎥


⎥⎥


⎥⎥


⎥⎥


⎥⎥



.


(6.18)

Free download pdf