P1: Trim: 6.125in×9.25in Top: 0.5in Gutter: 0.75in
CUUS2079-08 CUUS2079-Zafarani 978 1 107 01885 3 January 13, 2014 17:22
232 Influence and Homophily
v 2
(0.8)
(0.09) (0.4)
(0.7)
0.8
0.5
0.1
0.2
0.6
0.3
Step 1 (0.3) Step 2
Step 3
Step 5
Step 4
(0.8)
0.9
(0.8)
(0.09) (0.4)
0.8
0.5
0.1
0.2
0.6
0.3
(0.7) (0.3)
(0.7)
(0.8)
0.9
(0.8)
(0.09) (0.4)
0.8
0.5
0.1
0.2
0.6
0.3
(0.3)
(0.8)
0.9
(0.7)
(0.8)
(0.09) (0.4)
0.8
0.5
0.1
0.2
0.6
0.3
(0.3)
(0.8)
0.9
(0.7)
(0.8)
(0.09) (0.4)
0.8
0.5
0.1
0.2
0.6
0.3
(0.3)
(0.8)
0.9
v 1
v 3
v 4 v 5
v 6
v 7
v 2
v 1
v 3
v 4 v 5
v 6
v 7
v 2
v 1
v 3
v 4 v 5
v 6
v 7
v 2
v 1
v 3
v 4 v 5
v 6
v 7
v 2
v 1
v 3
v 4 v 5
v 6
v 7
Figure 8.5. Linear Threshold Model (LTM) Simulation. The values attached to nodes
denote thresholdsθi, and the values on the edges represent weightswi,j.
Assuming discrete time steps, we can formulate the size of the influenced
population|P(t)|:
|P(t)|=
∑
u∈P(t)
I(u,t−tu). (8.33)
Figure8.6shows how the model performs. Individualsu,v, andware
activated at time stepstu,tv, andtw, respectively. At timet, the total number
of influenced individuals is a summation of influence functionsIu,Iv, andIw
at time stepst−tu,t−tv, andt−tw, respectively. Our goal is to estimate
I(., .) given activation times and the number of influenced individuals at all
times. A simple approach is to utilize a probability distribution to estimate
I function. For instance, we can employ the power-law distribution to
estimate influence. In this case,I(u,t)=cu(t−tu)−αu, where we estimate