P1: Trim: 6.125in×9.25in Top: 0.5in Gutter: 0.75in
CUUS2079-09 CUUS2079-Zafarani 978 1 107 01885 3 January 13, 2014 17:28
254 Recommendation in Social Media
Table 9.2. An User-Item Matrix
Lion King Aladdin Mulan
John 3 0 3
Joe 5 4 0
Jill 1 2 4
Jorge 2 2 0
k-dimensional item spaceVkT. This way, we can compute the most similar
neighbors based on distances in thisk-dimensional space. The similarity in
thek-dimensional space can be computed using cosine similarity or Pearson
correlation. We demonstrate this via Example9.3.
Example 9.3. Consider the user-item matrix, in Table 9.2. Assuming this
matrix is X, then by computing the SVD of X=U VT,^1 we have
U=
⎡
⎢⎢
⎣
− 0. 4151 − 0. 4754 − 0 .7679 0. 1093
− 0 .7437 0.5278 0. 0169 − 0. 4099
− 0. 4110 − 0 .6626 0. 6207 − 0. 0820
− 0 .3251 0.2373 0.1572 0. 9018
⎤
⎥⎥
⎦ (9.27)
=
⎡
⎢⎢
⎣
8. 0265 0 0
04. 3886 0
002. 0777
000
⎤
⎥⎥
⎦ (9.28)
VT =
⎡
⎣
− 0. 7506 − 0. 5540 − 0. 3600
0 .2335 0. 2872 − 0. 9290
− 0 .6181 0.7814 0. 0863
⎤
⎦ (9.29)
Considering a rank 2 approximation (i.e., k= 2 ), we truncate all three
matrices:
Uk=
⎡
⎢⎢
⎣
− 0. 4151 − 0. 4754
− 0 .7437 0. 5278
− 0. 4110 − 0. 6626
− 0 .3251 0. 2373
⎤
⎥⎥
⎦ (9.30)
(^) k=
[
8. 0265 0
04. 3886
]
(9.31)
VkT =