Social Media Mining: An Introduction

(Axel Boer) #1

P1: Trim: 6.125in×9.25in Top: 0.5in Gutter: 0.75in
CUUS2079-09 CUUS2079-Zafarani 978 1 107 01885 3 January 13, 2014 17:28


254 Recommendation in Social Media

Table 9.2. An User-Item Matrix

Lion King Aladdin Mulan
John 3 0 3
Joe 5 4 0
Jill 1 2 4
Jorge 2 2 0

k-dimensional item spaceVkT. This way, we can compute the most similar
neighbors based on distances in thisk-dimensional space. The similarity in
thek-dimensional space can be computed using cosine similarity or Pearson
correlation. We demonstrate this via Example9.3.

Example 9.3. Consider the user-item matrix, in Table 9.2. Assuming this
matrix is X, then by computing the SVD of X=U VT,^1 we have

U=



⎢⎢



− 0. 4151 − 0. 4754 − 0 .7679 0. 1093


− 0 .7437 0.5278 0. 0169 − 0. 4099


− 0. 4110 − 0 .6626 0. 6207 − 0. 0820


− 0 .3251 0.2373 0.1572 0. 9018



⎥⎥


⎦ (9.27)


=



⎢⎢



8. 0265 0 0


04. 3886 0


002. 0777


000



⎥⎥


⎦ (9.28)


VT =




− 0. 7506 − 0. 5540 − 0. 3600


0 .2335 0. 2872 − 0. 9290


− 0 .6181 0.7814 0. 0863



⎦ (9.29)


Considering a rank 2 approximation (i.e., k= 2 ), we truncate all three
matrices:

Uk=


⎢⎢



− 0. 4151 − 0. 4754


− 0 .7437 0. 5278


− 0. 4110 − 0. 6626


− 0 .3251 0. 2373



⎥⎥


⎦ (9.30)


(^) k=


[


8. 0265 0


04. 3886


]


(9.31)


VkT =

[


− 0. 7506 − 0. 5540 − 0. 3600


0 .2335 0. 2872 − 0. 9290


]


. (9.32)

Free download pdf