P1: qVa Trim: 6.125in×9.25in Top: 0.5in Gutter: 0.75in
CUUS2079-03 CUUS2079-Zafarani 978 1 107 01885 3 January 13, 2014 16:45
3.1 Centrality 55
v 1 v 2 v 3
v 3
v 1
v 4 v 2 v 5
(a) A three node graph (b) A five node graph
Figure 3.2. Eigenvector Centrality Example.
AssumingCe=[u 1 u 2 u 3 ]T,
⎡
⎣
0 −λ 10
10 −λ 1
010 −λ
⎤
⎦
⎡
⎣
u 1
u 2
u 3
⎤
⎦=
⎡
⎣
0
0
0
⎤
⎦. (3.12)
SinceCe =[000]T, the characteristic equation is
det(A−λI)=
∣∣
∣∣
∣∣
0 −λ 10
10 −λ 1
010 −λ
∣∣
∣∣
∣∣=^0 , (3.13)
or equivalently,
(−λ)(λ^2 −1)−1(−λ)= 2 λ−λ^3 =λ(2−λ^2 )= 0. (3.14)
So the eigenvalues are(−
√
2 , 0 ,+
√
√ 2). We select the largest eigenvalue:
2. We compute the corresponding eigenvector:
⎡
⎢⎣
0 −
√
21 0
10 −
√
21
010 −
√
2
⎤
⎥⎦
⎡
⎣
u 1
u 2
u 3
⎤
⎦=
⎡
⎣
0
0
0
⎤
⎦. (3.15)
AssumingCevector has norm 1, its solution is
Ce=
⎡
⎣
u 1
u 2
u 3
⎤
⎦=
⎡
⎣
√^1 /^2
2 / 2
1 / 2
⎤
⎦, (3.16)
which denotes that nodev 2 is the most central node and nodesv 1 andv 3
have equal centrality values.