Social Media Mining: An Introduction

(Axel Boer) #1

P1: qVa Trim: 6.125in×9.25in Top: 0.5in Gutter: 0.75in
CUUS2079-03 CUUS2079-Zafarani 978 1 107 01885 3 January 13, 2014 16:45


3.1 Centrality 55

v 1 v 2 v 3

v 3

v 1

v 4 v 2 v 5

(a) A three node graph (b) A five node graph
Figure 3.2. Eigenvector Centrality Example.

AssumingCe=[u 1 u 2 u 3 ]T,


0 −λ 10
10 −λ 1
010 −λ





u 1
u 2
u 3


⎦=




0


0


0



⎦. (3.12)


SinceCe =[000]T, the characteristic equation is

det(A−λI)=

∣∣


∣∣


∣∣


0 −λ 10
10 −λ 1
010 −λ

∣∣


∣∣


∣∣=^0 , (3.13)


or equivalently,

(−λ)(λ^2 −1)−1(−λ)= 2 λ−λ^3 =λ(2−λ^2 )= 0. (3.14)

So the eigenvalues are(−


2 , 0 ,+



√ 2). We select the largest eigenvalue:
2. We compute the corresponding eigenvector:

⎢⎣

0 −



21 0


10 −



21


010 −



2



⎥⎦




u 1
u 2
u 3


⎦=




0


0


0



⎦. (3.15)


AssumingCevector has norm 1, its solution is

Ce=



u 1
u 2
u 3


⎦=




√^1 /^2


2 / 2


1 / 2



⎦, (3.16)


which denotes that nodev 2 is the most central node and nodesv 1 andv 3
have equal centrality values.
Free download pdf