seen that
sinα=cosβ=cos( 90 °−α)
cosα=sinβ=sin( 90 °−α)
tanα=cotβ=cot( 90 °−α)
cotα=tanβ=tan( 90 °−α)
i.e. the ‘co-trig ratio’ is the ratio of the complementary angle.
Solution to review question 6.1.2
Youwillfinditveryusefultocommitasmanyoftheseaspossibleto
memory. Many of these results can be obtained from Figure 6.4.
(i) cos 0= 1
(ii) cos 2π= 1
(iii) sin 90°= 1
(iv) sin
π
4
=
1
√
2
(this is theexactvalue – see Figure 6.4)
(v) cos
π
2
= 0
(vi) sin 45°=sin
π
4
=
1
√
2
(vii) tan 90°is, strictly, not defined but it is usual to take it as∞
(viii) sin 0= 0
(ix) sin 60°=
√
3
2
(x) sin
2 π
3
=sin
π
3
=
√
3
2
(xi) cos
π
3
=
1
2
(xii) tan 45°= 1
(xiii) cos 30°=
√
3
2
(xiv) sin 30°=
1
2
(xv) tan
π
3
=
√
3
(xvi) cos 45°=
1
√
2
(xvii) cos
3 π
2
=cos
π
2
= 0
(xviii) tan(− 60 °)=−tan 60°=−
√
3
(xix) sin(− 120 °)=−sin 120°=−
√
3
2