seen that
sinα=cosβ=cos( 90 °−α)
cosα=sinβ=sin( 90 °−α)
tanα=cotβ=cot( 90 °−α)
cotα=tanβ=tan( 90 °−α)i.e. the ‘co-trig ratio’ is the ratio of the complementary angle.
Solution to review question 6.1.2
Youwillfinditveryusefultocommitasmanyoftheseaspossibleto
memory. Many of these results can be obtained from Figure 6.4.(i) cos 0= 1
(ii) cos 2π= 1
(iii) sin 90°= 1(iv) sinπ
4=1
√
2(this is theexactvalue – see Figure 6.4)(v) cosπ
2= 0(vi) sin 45°=sinπ
4=1
√
2
(vii) tan 90°is, strictly, not defined but it is usual to take it as∞
(viii) sin 0= 0(ix) sin 60°=√
3
2(x) sin2 π
3=sinπ
3=√
3
2
(xi) cosπ
3=1
2
(xii) tan 45°= 1(xiii) cos 30°=√
3
2(xiv) sin 30°=1
2
(xv) tanπ
3=√
3(xvi) cos 45°=1
√
2(xvii) cos3 π
2=cosπ
2= 0(xviii) tan(− 60 °)=−tan 60°=−√
3(xix) sin(− 120 °)=−sin 120°=−√
3
2