Understanding Engineering Mathematics

(やまだぃちぅ) #1

seen that


sinα=cosβ=cos( 90 °−α)
cosα=sinβ=sin( 90 °−α)
tanα=cotβ=cot( 90 °−α)
cotα=tanβ=tan( 90 °−α)

i.e. the ‘co-trig ratio’ is the ratio of the complementary angle.


Solution to review question 6.1.2
Youwillfinditveryusefultocommitasmanyoftheseaspossibleto
memory. Many of these results can be obtained from Figure 6.4.

(i) cos 0= 1
(ii) cos 2π= 1
(iii) sin 90°= 1

(iv) sin

π
4

=

1

2

(this is theexactvalue – see Figure 6.4)

(v) cos

π
2

= 0

(vi) sin 45°=sin

π
4

=

1

2
(vii) tan 90°is, strictly, not defined but it is usual to take it as∞
(viii) sin 0= 0

(ix) sin 60°=


3
2

(x) sin

2 π
3

=sin

π
3

=


3
2
(xi) cos

π
3

=

1
2
(xii) tan 45°= 1

(xiii) cos 30°=


3
2

(xiv) sin 30°=

1
2
(xv) tan

π
3

=


3

(xvi) cos 45°=

1

2

(xvii) cos

3 π
2

=cos

π
2

= 0

(xviii) tan(− 60 °)=−tan 60°=−


3

(xix) sin(− 120 °)=−sin 120°=−


3
2
Free download pdf