Understanding Engineering Mathematics

(やまだぃちぅ) #1
(xx) cos

(

π
3

)
=cos


3

)
=

1
2
(xxi) sin( 585 °)=sin( 225 °)=−sin( 45 °)=−

1

2

(xxii) cos( 225 °)=−cos( 45 °)=−

1

2
(xxiii) tan(− 135 °)=−tan( 135 °)=−(−tan 45°)=−(− 1 )= 1
(xxiv) sec 30°= 1 /cos 30°= 2 /


3
(xxv) cosecπ/ 4 = 1 /sin(π/ 4 )=


2
(xxvi) cot 60°= 1 /tan 60°= 1 /


3
(xxvii) sec 120°= 1 /cos 120°=− 1 /cos 60°=− 2
(xxviii) cot

(

π
2

)
=−cot(π/ 2 )= 0

(xxix) cosec(− 60 °)=− 1 /sin 60°=− 2 /


3

6.2.3 Sine and cosine rules and solutions of triangles



172 194➤

For general triangles two important rules apply. We use the standard notation – capital
A,B,Cfor the angles with corresponding lower case letters labelling the opposite sides
(Figure 6.6).


C B

A

b

a

c

Figure 6.6Standard labelling of angles and sides.


Thesine rulestates that
a
sinA

=

b
sinB

=

c
sinC

i.e. the sides of a triangle are proportional to the sines of the opposite angles. We can see
this by using the result for the area of a triangle−^12 base×height. We can calculate this
area in three different ways, giving:


1
2 bcsinA=

1
2 acsinB=

1
2 absinC

The sine rule then follows by dividing by^12 abcand taking the reciprocals of the results.
Incidentally, there is another useful formula (Heron’s formula) for calculating the area
of a triangle with sidesa,b,c:


area=


s(s−a)(s−b)(s−c)
Free download pdf