Understanding Engineering Mathematics

(やまだぃちぅ) #1
(iv)


3
2

π
3

nπ+(− 1 )n

π
3

π
6

2 nπ±

π
6

(v)

1

2

π
4

nπ+(− 1 )n

π
4

π
4

2 nπ±

π
4

(vi) −

1

2


π
4

nπ+(− 1 )n+^1

π
4

3 π
4

2 nπ±

3 π
4
wherenis an integer

B.


tan−^1 x 01


3 − 1 −

1

3

PV 0

π
4

π
3


π
4


π
6
GS nπ nπ+

π
4

nπ+

π
3

nπ−

π
4

nπ−

π
6

6.3.6 The Pythagorean identities – cos^2 Ysin
2
= 1


A.You may obtain different forms of the answers – consider it a further exercise to check
their equivalence to the following!


(i) (a) sinθ (b) cotθ (c) tan^2 θ
(ii) (a) cosθ (b) cosecθcotθ (c) secθtanθ

(iii) (a) secθ (b) sinθcosθ (c) cosθcotθ


B. (i)


x^2
a^2

+

y^2
b^2

= 1 (ii) y=

bx

a^2 −x^2

C. (i)



21
5

,

2

21

(ii)

2


42
13

,

1
2


42

(iii)

24
25

,

7
24

D.5, 53.13°


6.3.7 Compound angle formulae


B. (i)


1
4

(ii)


2 (


3 − 1 )
4

(iii) 2−


3

(iv) −


2 (


3 + 1 )
4

(v) −( 2 +


3 ) (vi)


2 (


3 − 1 )
4

C. (i)



( 2 −


2 )
2

(ii)


2 +


2
2

(iii)


6 ( 2 −


2 )
6
Free download pdf