So by product rule, with sayu=x^2 ,v=cosx,dy
dx=d(uv)
dx=d
dx(x^2 cosx)=vdu
dx+udv
dx=d(x^2 )
dxcosx+x^2d
dx(cosx)= 2 xcosx+x^2 (−sinx)
= 2 xcosx−x^2 sinx(iii) y=
x− 1
x+ 1
We can treat this as a quotienty=u
vand use the quotient rule,or
treat as a product:y=(x− 1 )×(
1
x+ 1)sody
dx= 1 ×1
x+ 1+(x− 1 )(
−1
(x+ 1 )^2)=x+ 1 −(x− 1 )
(x+ 1 )^2=2
(x+ 1 )^2(iv)y=cos(x^2 + 1 )
This is a function(cos)of a function(x^2 + 1 )(97➤
), so we can
use the function of a function rule:dy
dx=dy
dudu
dx(
u=x^2 + 1
y=cosu)giving
dy
dx=−sin(x^2 + 1 )×( 2 x)=− 2 xsin(x^2 + 1 )(v)y=ln 3x
Again, the function of a function rule can be used:dy
dx=1
3 x× 3 =1
xOrthis can be simplified using rules of logarithms (131➤
)y=ln 3x=ln 3+lnxTherefore
dy
dx= 0 +1
xas before