function of a function rule to change the differentiation to one with
respect tot, and write
d^2 y
dx^2
=
d
dx
(
dy
dx
)
=
d
dt
(
dy
dx
)
×
dt
dx
=
d
dt
(
dy
dx
)/
dx
dt
on using
dt
dx
= 1
/
dx
dt
So:
d^2 y
dx^2
=
d
dt
(
1
2 t
)/
2 t
−
1
2 t^2
/
2 t=−
1
4 t^3
8.3 Reinforcement
8.3.1 Geometrical interpretation of differentiation
➤➤
228 230
➤
A.Evaluate the slopes of the following curves at the points specified:
(i) y=x^3 −xx= 1 (ii) y=sinxx=π
(iii) y= 2 ex x=0(iv)y=
3
x
x= 1
B.Determine where the slope of the curvey= 2 x^3 + 3 x^2 − 12 x+6 is zero.
8.3.2 Differentiation from first principles
➤➤
228 230
➤
Differentiate from first principles:
(i) 3x (ii) x^2 + 2 x+ 1 (iii) x^3 (iv) cosx
8.3.3 Standard derivatives
➤➤
229 232
➤
A.Differentiate without reference to a standard derivatives table:
(i) ex (ii) cosx (iii) x^31 (iv) lnx
(v) sinx (vi) x
1
(^3) (vii) tanx (viii)^1
x^3