(iii)7
3×4
7=4
3(iv)7
5×3
14=1
5×3
2
(cancelling 7 from top and bottom, as in (iii))=1 × 3
5 × 2=3
10(v)3
4÷4
5=3
4×5
4=15
16(vi)1
2+1
3=3
2 × 3+2
2 × 3
on multiplying top and bottom appropriately to get the common
denominator in both fractions,=3
6+2
6=3 + 2
6=5
6(vii)1
2−1
3=3
6−2
6=3 − 2
6=1
6(viii)
4
15−7
3=4
15−5 × 7
15=4 − 35
15=−31
15(ix) 1+1
2+1
3=6
6+3
6+2
6=11
6
Here we found the LCM of 2 and 3 (6) and put everything over
this, including the 1.(x)2
3−3
4+1
8
We want the LCM of 3, 4, 8. This is 24, so
2
3−3
4+1
8=2 × 8
24−3 × 6
24+3
24=16 − 18 + 3
24=1
24