by the double angle formula for cos 2x.=1
2∫
( 1 −cos 2x)dx=1
2(
x−sin 2x
2)
+CNB: Be careful with functions such as cos 2x, which, of course is not
the same thing as 2 cosx!(ii) We can write∫
cos^3 xdx=∫
cos^2 xcosxdx=∫
(
1 −sin^2 x)
cosxdx
Now putu=sinx, or equivalently:=∫
( 1 −sin^2 x)d(sinx)=sinx−sin^3 x
3+C(iii) We can express sinAcosBas a sum of sines by using
sin(A+B)=sinAcosB+sinBcosA
sin(A−B)=sinAcosB−sinBcosAAdding:sinAcosB=^12 (sin(A+B)+sin(A−B))So
sin 2xcos 3x=^12 (sin( 2 x+ 3 x)+sin( 2 x− 3 x))=^12 (sin 5x+sin(−x))=^12 (sin 5x−sinx)So we can write:
∫
sin 2xcos 3xdx=1
2∫
(sin 5x−sinx)dx=1
2(
−cos 5x
5+cosx)
+C=1
2cosx−1
10cos 5x+C(iv) This is easy now, using the double angle formula for sin 2xback-
wards:
sinxcosx=^12 2sinxcosx=^12 sin 2x