by the double angle formula for cos 2x.
=
1
2
∫
( 1 −cos 2x)dx
=
1
2
(
x−
sin 2x
2
)
+C
NB: Be careful with functions such as cos 2x, which, of course is not
the same thing as 2 cosx!
(ii) We can write
∫
cos^3 xdx=
∫
cos^2 xcosxdx
=
∫
(
1 −sin^2 x
)
cosxdx
Now putu=sinx, or equivalently:
=
∫
( 1 −sin^2 x)d(sinx)=sinx−
sin^3 x
3
+C
(iii) We can express sinAcosBas a sum of sines by using
sin(A+B)=sinAcosB+sinBcosA
sin(A−B)=sinAcosB−sinBcosA
Adding:
sinAcosB=^12 (sin(A+B)+sin(A−B))
So
sin 2xcos 3x=^12 (sin( 2 x+ 3 x)+sin( 2 x− 3 x))
=^12 (sin 5x+sin(−x))
=^12 (sin 5x−sinx)
So we can write:
∫
sin 2xcos 3xdx=
1
2
∫
(sin 5x−sinx)dx
=
1
2
(
−
cos 5x
5
+cosx
)
+C
=
1
2
cosx−
1
10
cos 5x+C
(iv) This is easy now, using the double angle formula for sin 2xback-
wards:
sinxcosx=^12 2sinxcosx
=^12 sin 2x