Understanding Engineering Mathematics

(やまだぃちぅ) #1
by the double angle formula for cos 2x.

=

1
2


( 1 −cos 2x)dx

=

1
2

(
x−

sin 2x
2

)
+C

NB: Be careful with functions such as cos 2x, which, of course is not
the same thing as 2 cosx!

(ii) We can write


cos^3 xdx=


cos^2 xcosxdx

=


(
1 −sin^2 x

)
cosxdx
Now putu=sinx, or equivalently:

=


( 1 −sin^2 x)d(sinx)=sinx−

sin^3 x
3

+C

(iii) We can express sinAcosBas a sum of sines by using


sin(A+B)=sinAcosB+sinBcosA
sin(A−B)=sinAcosB−sinBcosA

Adding:

sinAcosB=^12 (sin(A+B)+sin(A−B))

So
sin 2xcos 3x=^12 (sin( 2 x+ 3 x)+sin( 2 x− 3 x))

=^12 (sin 5x+sin(−x))

=^12 (sin 5x−sinx)

So we can write:

sin 2xcos 3xdx=

1
2


(sin 5x−sinx)dx

=

1
2

(

cos 5x
5

+cosx

)
+C

=

1
2

cosx−

1
10

cos 5x+C

(iv) This is easy now, using the double angle formula for sin 2xback-
wards:
sinxcosx=^12 2sinxcosx

=^12 sin 2x
Free download pdf