9.3.7 Integrating rational functions
➤➤
252 265➤A.Integrate the following by partial fractions:(i)2 x
(x− 1 )(x+ 3 )(ii)x+ 1
x^2 + 5 x+ 6(iii)4
2 x^2 −x− 1(iv)3
(x+ 1 )(x^2 + 1 )(v)x+ 1
(x− 1 )^2 (x− 2 )(vi)2 x+ 1
x^3 + 2 x^2 −x− 2B. Integrate the following by completing the square:(i)1
x^2 + 2 x+ 5(ii)3
x^2 − 2 x+ 2(iii)2
2 x^2 + 2 x+ 1(iv)1
x^2 + 6 x+ 10(v)1
2 x^2 + 12 x+ 27C.Integrate:(i)x^2 + 1
(x+ 1 )(x+ 2 )(ii)x^3
x^2 + 2 x+ 2(iii)3 x^4
(x− 1 )(x+ 1 )9.3.8 Using trig identities in integration
➤➤
252 269
➤Integrate:(i) cos^2 xsin^3 x (ii) cos 2xcos 3x (iii) cos^5 x
(iv) cos 5xsin 3x (v) sin 2xsin 3x9.3.9 Using trig substitutions in integration
➤➤
252 272
➤A.Integrate the following functions using appropriate substitutions:
(i)1
√
4 − 4 x^2(ii)2
4 + 9 x^2(iii)2
√
1 − 9 x^2(iv)3
1 + 4 x^2(v)1
√
8 − 2 x−x^2(vi)1
√
6 x−x^2B.Use thet=tanθ
2substitution to integrate∫
1
3 +5cosθdθ.9.3.10 Integration by parts
➤➤
252 273➤Integrate:(i) xcosx (ii) x^3 ex (iii) sin−^1 x (iv) excosx
(v) x^2 cosx (vi) xlnx (vii) x^3 ex2