9.3.7 Integrating rational functions
➤➤
252 265
➤
A.Integrate the following by partial fractions:
(i)
2 x
(x− 1 )(x+ 3 )
(ii)
x+ 1
x^2 + 5 x+ 6
(iii)
4
2 x^2 −x− 1
(iv)
3
(x+ 1 )(x^2 + 1 )
(v)
x+ 1
(x− 1 )^2 (x− 2 )
(vi)
2 x+ 1
x^3 + 2 x^2 −x− 2
B. Integrate the following by completing the square:
(i)
1
x^2 + 2 x+ 5
(ii)
3
x^2 − 2 x+ 2
(iii)
2
2 x^2 + 2 x+ 1
(iv)
1
x^2 + 6 x+ 10
(v)
1
2 x^2 + 12 x+ 27
C.Integrate:
(i)
x^2 + 1
(x+ 1 )(x+ 2 )
(ii)
x^3
x^2 + 2 x+ 2
(iii)
3 x^4
(x− 1 )(x+ 1 )
9.3.8 Using trig identities in integration
➤➤
252 269
➤
Integrate:
(i) cos^2 xsin^3 x (ii) cos 2xcos 3x (iii) cos^5 x
(iv) cos 5xsin 3x (v) sin 2xsin 3x
9.3.9 Using trig substitutions in integration
➤➤
252 272
➤
A.Integrate the following functions using appropriate substitutions:
(i)
1
√
4 − 4 x^2
(ii)
2
4 + 9 x^2
(iii)
2
√
1 − 9 x^2
(iv)
3
1 + 4 x^2
(v)
1
√
8 − 2 x−x^2
(vi)
1
√
6 x−x^2
B.Use thet=tan
θ
2
substitution to integrate
∫
1
3 +5cosθ
dθ.
9.3.10 Integration by parts
➤➤
252 273
➤
Integrate:
(i) xcosx (ii) x^3 ex (iii) sin−^1 x (iv) excosx
(v) x^2 cosx (vi) xlnx (vii) x^3 ex
2