These are called theorthogonality relations for sine and cosine. The limits−π,πon
the integrals may in fact be replaced byanyintegral of length 2π, or integer multiple
of 2π.
The coefficientsan,bnof the Fourier series for a given functionf(t)can be deter-
mined by multiplying through by cosnxor sinnx, integrating over a single period and
using the above orthogonality relations to remove all but the desired coefficient (see
Chapter 17). Show that in generalan=1
π∫π−πf(t)cosntdtn= 0 , 1 , 2 ,...bn=1
π∫π−πf(t)sinntdtn= 1 , 2 ,...Answers to reinforcement exercises
Note: an arbitrary constantCshould be added to each indefinite integral.
9.3.1 Definition of integration
A.(i) 9x^2 (ii)
√
3
2√
x(iii) −8
x^5(iv)2
5x−3
5(v) 3 cos 3x (vi) − 3 x^2 sinx^3 (vii) 5e^5 x (viii)− 1
(x+ 1 )^2(ix)1
x(x)1
2√
x+ 1(xi)3
3 x+ 1(xii)1
x^2 + 1B.(i) 2 lnx (ii)
3
5e^5 x (iii)− 2
( 1 +x)(iv) −1
4 x^4(v) sinx^3 (vi) −3tan−^1 x (vii)5
2x^2 /^5 (viii) 2√
x(ix)2
3sin 3x (x)x^3
3(xi) 6√
x+ 1 (xii)1
3ln| 3 x+ 1 |9.3.2 Standard integrals
A.(i) 4x (ii) x^3 −x^2 +x (iii)
− 3
4 x^4(iv)3
5x^5 /^3(v) sinx (vi) tanx (vii) xlnx−x (viii) tan−^1 xB.(i) 2u^2 (ii)
2 s^3
3−3 s^2
2+ 2 s (iii) −1
t^6(iv)4
5x^5 /^4(v) −cosθ (vi) −cott (vii)e^3 t
3(viii) tan−^1 s