These are called theorthogonality relations for sine and cosine. The limits−π,πon
the integrals may in fact be replaced byanyintegral of length 2π, or integer multiple
of 2π.
The coefficientsan,bnof the Fourier series for a given functionf(t)can be deter-
mined by multiplying through by cosnxor sinnx, integrating over a single period and
using the above orthogonality relations to remove all but the desired coefficient (see
Chapter 17). Show that in general
an=
1
π
∫π
−π
f(t)cosntdtn= 0 , 1 , 2 ,...
bn=
1
π
∫π
−π
f(t)sinntdtn= 1 , 2 ,...
Answers to reinforcement exercises
Note: an arbitrary constantCshould be added to each indefinite integral.
9.3.1 Definition of integration
A.(i) 9x^2 (ii)
√
3
2
√
x
(iii) −
8
x^5
(iv)
2
5
x−
3
5
(v) 3 cos 3x (vi) − 3 x^2 sinx^3 (vii) 5e^5 x (viii)
− 1
(x+ 1 )^2
(ix)
1
x
(x)
1
2
√
x+ 1
(xi)
3
3 x+ 1
(xii)
1
x^2 + 1
B.(i) 2 lnx (ii)
3
5
e^5 x (iii)
− 2
( 1 +x)
(iv) −
1
4 x^4
(v) sinx^3 (vi) −3tan−^1 x (vii)
5
2
x^2 /^5 (viii) 2
√
x
(ix)
2
3
sin 3x (x)
x^3
3
(xi) 6
√
x+ 1 (xii)
1
3
ln| 3 x+ 1 |
9.3.2 Standard integrals
A.(i) 4x (ii) x^3 −x^2 +x (iii)
− 3
4 x^4
(iv)
3
5
x^5 /^3
(v) sinx (vi) tanx (vii) xlnx−x (viii) tan−^1 x
B.(i) 2u^2 (ii)
2 s^3
3
−
3 s^2
2
+ 2 s (iii) −
1
t^6
(iv)
4
5
x^5 /^4
(v) −cosθ (vi) −cott (vii)
e^3 t
3
(viii) tan−^1 s