Understanding Engineering Mathematics

(やまだぃちぅ) #1
These are called theorthogonality relations for sine and cosine. The limits−π,πon
the integrals may in fact be replaced byanyintegral of length 2π, or integer multiple
of 2π.
The coefficientsan,bnof the Fourier series for a given functionf(t)can be deter-
mined by multiplying through by cosnxor sinnx, integrating over a single period and
using the above orthogonality relations to remove all but the desired coefficient (see
Chapter 17). Show that in general

an=

1
π

∫π

−π

f(t)cosntdtn= 0 , 1 , 2 ,...

bn=

1
π

∫π

−π

f(t)sinntdtn= 1 , 2 ,...

Answers to reinforcement exercises

Note: an arbitrary constantCshould be added to each indefinite integral.


9.3.1 Definition of integration


A.(i) 9x^2 (ii)



3
2


x

(iii) −

8
x^5

(iv)

2
5

x−

3
5

(v) 3 cos 3x (vi) − 3 x^2 sinx^3 (vii) 5e^5 x (viii)

− 1
(x+ 1 )^2

(ix)

1
x

(x)

1
2


x+ 1

(xi)

3
3 x+ 1

(xii)

1
x^2 + 1

B.(i) 2 lnx (ii)


3
5

e^5 x (iii)

− 2
( 1 +x)

(iv) −

1
4 x^4

(v) sinx^3 (vi) −3tan−^1 x (vii)

5
2

x^2 /^5 (viii) 2


x

(ix)

2
3

sin 3x (x)

x^3
3

(xi) 6


x+ 1 (xii)

1
3

ln| 3 x+ 1 |

9.3.2 Standard integrals


A.(i) 4x (ii) x^3 −x^2 +x (iii)


− 3
4 x^4

(iv)

3
5

x^5 /^3

(v) sinx (vi) tanx (vii) xlnx−x (viii) tan−^1 x

B.(i) 2u^2 (ii)


2 s^3
3


3 s^2
2

+ 2 s (iii) −

1
t^6

(iv)

4
5

x^5 /^4

(v) −cosθ (vi) −cott (vii)

e^3 t
3

(viii) tan−^1 s
Free download pdf