9.3.3 Addition of integrals
(i)
2
3
x^3 +
3
2
1
x^2
(ii) 2 sinx+cosx (iii) sinhx=^12 (ex−ex)
(iv) −cos(x+ 3 ) (v)
∑n
r= 0
arxr+^1
r+ 1
(vi)
1
2
(
cosx−
1
3
cos 3x
)
(vii) coshx
9.3.4 Simplifying the integrand
A. (i)
x^2
2
−x(x = 2 ) (ii) sinx (iii) sinx+cosx,provided cosx−sinx = 0
(iv) −
2 e
x
(x > 0 ) (v) x+
1
2
cos 2x
B.ln|secx+tanx|,ln|cosecx−cotx|
9.3.5 Linear substitution in integration
(i)
1
32
( 4 x+ 3 )^8 (ii)
3
8
( 2 x− 1 )^4 /^3 (iii) −^13 cos( 3 x− 1 ) (iv)^12 e^4 x+x
(v)
3
2
ln( 2 x+ 1 ) (vi)
1
10
( 2 x− 1 )^5 (vii)
2
9
( 3 x+ 2 )^3 /^2 (viii)^12 sin( 2 x+ 1 )
(ix)
4
3
e^3 x−^1 (x)
1
4
ln( 4 x− 3 )
9.3.6 Thedu=f′.x/dxsubstitution
A. (i) u=x^3 ,^13 ex
3
(ii) u=tanx+2,−cos(tanx+2)
(iii) u=sinx,
sin^4 x
4
(iv) u=x^2 + 2 x+3,
1
2
ln(x^2 + 2 x+3)
(v) u=cosx,ln|secx|
B. (i) −cos(f (x)) (ii)^12 e(f (x))
2
(iii)^13 sin(x^3 + 1 )
(iv) cosxln(cosx)−cosx (v) ln(x− 1 ) (vi) ef(x)
(vii) sin(f (x)+ 2 )
C. (i)
1
4
(x^3 + 2 )^4 (ii)
2
3
(x^2 + 1 )^3 /^2 (iii) ln(x^2 −x+ 1 )
(iv)
1
2
sin(x^2 + 2 x+ 1 ) (v) −ecosx (vi) ln(tanx)
(vii)
1
16
(2sin2x+ 1 )^4 (viii) 6
√
x^2 + 4 x+ 4