9.3.3 Addition of integrals
(i)2
3x^3 +3
21
x^2(ii) 2 sinx+cosx (iii) sinhx=^12 (ex−ex)(iv) −cos(x+ 3 ) (v)∑nr= 0arxr+^1
r+ 1(vi)1
2(
cosx−1
3cos 3x)(vii) coshx
9.3.4 Simplifying the integrand
A. (i)
x^2
2−x(x = 2 ) (ii) sinx (iii) sinx+cosx,provided cosx−sinx = 0(iv) −2 e
x(x > 0 ) (v) x+1
2cos 2xB.ln|secx+tanx|,ln|cosecx−cotx|
9.3.5 Linear substitution in integration
(i)1
32( 4 x+ 3 )^8 (ii)3
8( 2 x− 1 )^4 /^3 (iii) −^13 cos( 3 x− 1 ) (iv)^12 e^4 x+x(v)3
2ln( 2 x+ 1 ) (vi)1
10( 2 x− 1 )^5 (vii)2
9( 3 x+ 2 )^3 /^2 (viii)^12 sin( 2 x+ 1 )(ix)
4
3e^3 x−^1 (x)1
4ln( 4 x− 3 )9.3.6 Thedu=f′.x/dxsubstitution
A. (i) u=x^3 ,^13 ex
3
(ii) u=tanx+2,−cos(tanx+2)
(iii) u=sinx,sin^4 x
4(iv) u=x^2 + 2 x+3,1
2ln(x^2 + 2 x+3)(v) u=cosx,ln|secx|B. (i) −cos(f (x)) (ii)^12 e(f (x))
2
(iii)^13 sin(x^3 + 1 )(iv) cosxln(cosx)−cosx (v) ln(x− 1 ) (vi) ef(x)(vii) sin(f (x)+ 2 )C. (i)
1
4(x^3 + 2 )^4 (ii)2
3(x^2 + 1 )^3 /^2 (iii) ln(x^2 −x+ 1 )(iv)1
2sin(x^2 + 2 x+ 1 ) (v) −ecosx (vi) ln(tanx)(vii)1
16(2sin2x+ 1 )^4 (viii) 6√
x^2 + 4 x+ 4