9.3.7 Integrating rational functions
A. (i)
1
2ln|(x− 1 )(x+ 3 )^3 | (ii) ln∣
∣
∣
∣(x+ 3 )^2
(x+ 2 )∣
∣
∣
∣ (iii)4
3ln∣
∣
∣
∣x− 1
2 x+ 1∣
∣
∣
∣(iv)3
4ln∣
∣
∣
∣(x+ 1 )^2
x^2 + 1∣
∣
∣
∣+3
2tan−^1 x (v) 3 ln∣
∣
∣
∣x− 2
x− 1∣
∣
∣
∣+2
x− 1(vi)1
2ln∣
∣
∣
∣x^2 − 1
(x+ 2 )^2∣
∣
∣
∣B. (i)
1
2tan−^1(
x+ 1
2)
(ii) 3 tan−^1 (x− 1 ) (iii) 2 tan−^1 ( 2 x+ 1 )(iv) tan−^1 (x+ 3 ) (v)1
3√
2tan−^1[√
2 (x+ 3 )
3]C. (i) x+
1
3ln∣
∣
∣
∣(x− 2 )^5
(x+ 1 )^2∣
∣
∣
∣ (ii)x^2
2− 2 x+ln(x^2 + 2 x+ 2 )+2tan−^1 (x+ 1 )(iii) x^3 + 3 x+3
2ln∣
∣
∣
∣x− 1
x+ 1∣
∣
∣
∣9.3.8 Using trig identities in integration
(i)cos^5 x
5−cos^3 x
3(ii)1
10sin 5x+1
2sinx(iii) sinx−
2
3sin^3 x+1
5sin^5 x (iv) −1
16(cos 8x−4cos2x)(v)1
10(5sinx−sin 5x)9.3.9 Using trig substitutions in integration
A. (i)
1
2sin−^1 x (ii)1
3tan−^1(
3 x
2)
(iii)2
3sin−^13 x(iv)3
2tan−^12 x (v) sin−^1(
x+ 1
3)
(vi) sin−^1(
x− 3
3)B.
1
4ln∣
∣
∣
∣2 +tanθ/ 2
2 −tanθ/ 2∣
∣
∣
∣9.3.10 Integration by parts
(i) xsinx+cosx (ii) (x^3 − 3 x^2 + 6 x− 6 )ex (iii) xsin−^1 x+√
1 −x^2