Understanding Engineering Mathematics

(やまだぃちぅ) #1

9.3.7 Integrating rational functions


A. (i)


1
2

ln|(x− 1 )(x+ 3 )^3 | (ii) ln





(x+ 3 )^2
(x+ 2 )




∣ (iii)

4
3

ln





x− 1
2 x+ 1





(iv)

3
4

ln





(x+ 1 )^2
x^2 + 1




∣+

3
2

tan−^1 x (v) 3 ln





x− 2
x− 1




∣+

2
x− 1

(vi)

1
2

ln





x^2 − 1
(x+ 2 )^2





B. (i)


1
2

tan−^1

(
x+ 1
2

)
(ii) 3 tan−^1 (x− 1 ) (iii) 2 tan−^1 ( 2 x+ 1 )

(iv) tan−^1 (x+ 3 ) (v)

1
3


2

tan−^1

[√
2 (x+ 3 )
3

]

C. (i) x+


1
3

ln





(x− 2 )^5
(x+ 1 )^2




∣ (ii)

x^2
2

− 2 x+ln(x^2 + 2 x+ 2 )+2tan−^1 (x+ 1 )

(iii) x^3 + 3 x+

3
2

ln





x− 1
x+ 1





9.3.8 Using trig identities in integration


(i)

cos^5 x
5


cos^3 x
3

(ii)

1
10

sin 5x+

1
2

sinx

(iii) sinx−


2
3

sin^3 x+

1
5

sin^5 x (iv) −

1
16

(cos 8x−4cos2x)

(v)

1
10

(5sinx−sin 5x)

9.3.9 Using trig substitutions in integration


A. (i)


1
2

sin−^1 x (ii)

1
3

tan−^1

(
3 x
2

)
(iii)

2
3

sin−^13 x

(iv)

3
2

tan−^12 x (v) sin−^1

(
x+ 1
3

)
(vi) sin−^1

(
x− 3
3

)

B.


1
4

ln





2 +tanθ/ 2
2 −tanθ/ 2





9.3.10 Integration by parts


(i) xsinx+cosx (ii) (x^3 − 3 x^2 + 6 x− 6 )ex (iii) xsin−^1 x+


1 −x^2
Free download pdf