9.3.7 Integrating rational functions
A. (i)
1
2
ln|(x− 1 )(x+ 3 )^3 | (ii) ln
∣
∣
∣
∣
(x+ 3 )^2
(x+ 2 )
∣
∣
∣
∣ (iii)
4
3
ln
∣
∣
∣
∣
x− 1
2 x+ 1
∣
∣
∣
∣
(iv)
3
4
ln
∣
∣
∣
∣
(x+ 1 )^2
x^2 + 1
∣
∣
∣
∣+
3
2
tan−^1 x (v) 3 ln
∣
∣
∣
∣
x− 2
x− 1
∣
∣
∣
∣+
2
x− 1
(vi)
1
2
ln
∣
∣
∣
∣
x^2 − 1
(x+ 2 )^2
∣
∣
∣
∣
B. (i)
1
2
tan−^1
(
x+ 1
2
)
(ii) 3 tan−^1 (x− 1 ) (iii) 2 tan−^1 ( 2 x+ 1 )
(iv) tan−^1 (x+ 3 ) (v)
1
3
√
2
tan−^1
[√
2 (x+ 3 )
3
]
C. (i) x+
1
3
ln
∣
∣
∣
∣
(x− 2 )^5
(x+ 1 )^2
∣
∣
∣
∣ (ii)
x^2
2
− 2 x+ln(x^2 + 2 x+ 2 )+2tan−^1 (x+ 1 )
(iii) x^3 + 3 x+
3
2
ln
∣
∣
∣
∣
x− 1
x+ 1
∣
∣
∣
∣
9.3.8 Using trig identities in integration
(i)
cos^5 x
5
−
cos^3 x
3
(ii)
1
10
sin 5x+
1
2
sinx
(iii) sinx−
2
3
sin^3 x+
1
5
sin^5 x (iv) −
1
16
(cos 8x−4cos2x)
(v)
1
10
(5sinx−sin 5x)
9.3.9 Using trig substitutions in integration
A. (i)
1
2
sin−^1 x (ii)
1
3
tan−^1
(
3 x
2
)
(iii)
2
3
sin−^13 x
(iv)
3
2
tan−^12 x (v) sin−^1
(
x+ 1
3
)
(vi) sin−^1
(
x− 3
3
)
B.
1
4
ln
∣
∣
∣
∣
2 +tanθ/ 2
2 −tanθ/ 2
∣
∣
∣
∣
9.3.10 Integration by parts
(i) xsinx+cosx (ii) (x^3 − 3 x^2 + 6 x− 6 )ex (iii) xsin−^1 x+
√
1 −x^2