Understanding Engineering Mathematics

(やまだぃちぅ) #1
x

O
y

z P(x,y,z)

OPr

Figure 11.12Position vector of a pointP.


Themagnitudeorlengthof a vectora=a 1 i+a 2 j+a 3 kis given by

a=|a|=


a^21 +a^22 +a 32

(also calledmodulusornormofa).
Aunit vectoris one of unit norm or magnitude – usually denoted with a circumflex,
for exampleaˆ.


Problem 11.4


Show that a=


3
2

iY

1
2

jisaunitvector.

We have|a|=


√√


(√
3
2

) 2
+

(
1
2

) 2
+ 02 =1.

Problem 11.5
Construct a unit vector parallel to a=iYj−3k.

To construct a unit vector parallel to a given vector we have only to divide by its modulus,
which fora=i+j− 3 kis


|a|=


12 + 12 +(− 3 )^2 =


11

so a unit vector parallel toais


ˆa=

1

11

(i+j− 3 k)

In general a vectora=a 1 i+a 2 j+a 3 kismultiplied by a scalarλas follows:

λa=λa 1 i+λa 2 j+λa 3 k

i.e. all components are multiplied byλ.
Note that the magnitude ofλais:


|λa|=λ|a|=λa
Free download pdf