is a vector tangential to the curve, pointing in the direction of motion of the particle and
with magnitude equal to the magnitude of the velocity of the particle. That is,
dr
dtis thevectorvelocityof the particle:
v=dr
dtSimilarlya=d^2 r
dt^2is theaccelerationof the particle.Problem 11.13
Find the velocity, acceleration and kinetic energy of the particle massm
whose position vector at timetis:r.t/=2cos!tiY2sin!tjVerify that for such a particle v·r=0.The velocity isv=dr
dt=− 2 ωsinωti+ 2 ωcosωtjFrom this we findv·r= 4 ω(−sinωti+cosωtj)·(cosωti+sinωtj)
= 4 ω(−sinωtcosωt+cosωtsinωt)= 0The acceleration isa=d^2 r
dt^2=dv
dt=− 2 ω^2 cosωti− 2 ω^2 sinωtj=−ω^2 rThe kinetic energy is1
2mv^2 =1
2m((− 2 ωsinωt)^2 +( 2 ωcosωt)^2 )=1
2m· 4 ω^2= 2 mω^2Exercises on 11.13
- Show that ifeis a vector of constant magnitude, then
e·de
dt= 0