5.(i)√
2 (ii)√
5 (iii)√
5(iv)√
14 (v) 5 (vi) 2
6.(i)√
14 (ii) 2√
3 (iii)√
35 (iv)√
22 (v)a√
6- 60 °
- (i)
(
1
√
2,1
√
2, 0)
(ii)(
2
√
5, 0 ,−1
√
5)
(iii)(
−2
√
5, 0 ,1
√
5)(iv)(
−2
√
14,3
√
14,1
√
14)
(v)(
0 ,4
5,3
5)
(vi)(
1
√
2,1
2,1
2)9.(i) 74. 5 ° (ii) 75. 04 ° (iii) 61. 87 ° (iv) 54. 74 ° (v) 60°10.(i) 2i−j+ 2 k (ii)i+ 2 j+ 3 k (iii)−i− 2 j− 3 k (iv) 2i− 3 j+ 4 k
(v) 2ui+ 3 vj+ 4 wk
- (i) |a|=3,ˆa=i (ii) |b|=
√
2,bˆ=1
√
2(i+j)(iii) |c|= 3√
2,ˆc=1
√
2(i−j) (iv) |d|=2,dˆ=√
3
2i+1
2j(v) |e|=3,eˆ=1
√
5i+2
√
5j (vi) |f|=√
3,ˆf=1
√
3i+1
√
3j+1
√
3k(vii) |g|=√
6,gˆ=−1
√
6i−1
√
6j+2
√
6k(viii) |h|= 2√
3,hˆ=1
√
3i+1
√
3j+1
√
3kThe coefficients of the unit vectors give the direction cosines that define the directions
of the vectors.- (i) 4i+j (ii) 4i− 2 j− 2 k (iii) 6i+ 3 j+ 2 k
(iv) − 6 j− 3 k (v) (√
3 − 2 )i+ 6 j− 5 k13.(i)
1
2( 8 i−j) (ii)2 +√
3
3i− 2 j (iii) − 6 k (iv) −1
2j+5
4k14.(i)
3
√
2i+3
√
2j (ii)√
3 j+k (iii) i+j+k15.Betweenaandbthe scalar product is 1
Betweenbandcthe scalar product is 3
√
2
Betweenaandcthe scalar products is− 0 .78 to two decimal places- x·y=88,λ=−
16
318.(i) − 1 (ii) 20 (iii) 0, so these are orthogonal
19.(i) 84. 26 ° (ii) 123. 06 ° (iii) 60°
20.(i) 3
√
2 (ii) 0 (iii) −√
2