5.(i)
√
2 (ii)
√
5 (iii)
√
5(iv)
√
14 (v) 5 (vi) 2
6.(i)
√
14 (ii) 2
√
3 (iii)
√
35 (iv)
√
22 (v)a
√
6
- 60 °
- (i)
(
1
√
2
,
1
√
2
, 0
)
(ii)
(
2
√
5
, 0 ,−
1
√
5
)
(iii)
(
−
2
√
5
, 0 ,
1
√
5
)
(iv)
(
−
2
√
14
,
3
√
14
,
1
√
14
)
(v)
(
0 ,
4
5
,
3
5
)
(vi)
(
1
√
2
,
1
2
,
1
2
)
9.(i) 74. 5 ° (ii) 75. 04 ° (iii) 61. 87 ° (iv) 54. 74 ° (v) 60°
10.(i) 2i−j+ 2 k (ii)i+ 2 j+ 3 k (iii)−i− 2 j− 3 k (iv) 2i− 3 j+ 4 k
(v) 2ui+ 3 vj+ 4 wk
- (i) |a|=3,ˆa=i (ii) |b|=
√
2,bˆ=
1
√
2
(i+j)
(iii) |c|= 3
√
2,ˆc=
1
√
2
(i−j) (iv) |d|=2,dˆ=
√
3
2
i+
1
2
j
(v) |e|=3,eˆ=
1
√
5
i+
2
√
5
j (vi) |f|=
√
3,ˆf=
1
√
3
i+
1
√
3
j+
1
√
3
k
(vii) |g|=
√
6,gˆ=−
1
√
6
i−
1
√
6
j+
2
√
6
k
(viii) |h|= 2
√
3,hˆ=
1
√
3
i+
1
√
3
j+
1
√
3
k
The coefficients of the unit vectors give the direction cosines that define the directions
of the vectors.
- (i) 4i+j (ii) 4i− 2 j− 2 k (iii) 6i+ 3 j+ 2 k
(iv) − 6 j− 3 k (v) (
√
3 − 2 )i+ 6 j− 5 k
13.(i)
1
2
( 8 i−j) (ii)
2 +
√
3
3
i− 2 j (iii) − 6 k (iv) −
1
2
j+
5
4
k
14.(i)
3
√
2
i+
3
√
2
j (ii)
√
3 j+k (iii) i+j+k
15.Betweenaandbthe scalar product is 1
Betweenbandcthe scalar product is 3
√
2
Betweenaandcthe scalar products is− 0 .78 to two decimal places
- x·y=88,λ=−
16
3
18.(i) − 1 (ii) 20 (iii) 0, so these are orthogonal
19.(i) 84. 26 ° (ii) 123. 06 ° (iii) 60°
20.(i) 3
√
2 (ii) 0 (iii) −
√
2