Understanding Engineering Mathematics

(やまだぃちぅ) #1
5.(i)


2 (ii)


5 (iii)


5(iv)


14 (v) 5 (vi) 2
6.(i)


14 (ii) 2


3 (iii)


35 (iv)


22 (v)a


6


  1. 60 °

  2. (i)


(
1

2

,

1

2

, 0

)
(ii)

(
2

5

, 0 ,−

1

5

)
(iii)

(

2

5

, 0 ,

1

5

)

(iv)

(

2

14

,

3

14

,

1

14

)
(v)

(
0 ,

4
5

,

3
5

)
(vi)

(
1

2

,

1
2

,

1
2

)

9.(i) 74. 5 ° (ii) 75. 04 ° (iii) 61. 87 ° (iv) 54. 74 ° (v) 60°

10.(i) 2i−j+ 2 k (ii)i+ 2 j+ 3 k (iii)−i− 2 j− 3 k (iv) 2i− 3 j+ 4 k
(v) 2ui+ 3 vj+ 4 wk



  1. (i) |a|=3,ˆa=i (ii) |b|=



2,bˆ=

1

2

(i+j)

(iii) |c|= 3


2,ˆc=

1

2

(i−j) (iv) |d|=2,dˆ=


3
2

i+

1
2

j

(v) |e|=3,eˆ=

1

5

i+

2

5

j (vi) |f|=


3,ˆf=

1

3

i+

1

3

j+

1

3

k

(vii) |g|=


6,gˆ=−

1

6

i−

1

6

j+

2

6

k

(viii) |h|= 2


3,hˆ=

1

3

i+

1

3

j+

1

3

k

The coefficients of the unit vectors give the direction cosines that define the directions
of the vectors.


  1. (i) 4i+j (ii) 4i− 2 j− 2 k (iii) 6i+ 3 j+ 2 k


(iv) − 6 j− 3 k (v) (


3 − 2 )i+ 6 j− 5 k

13.(i)


1
2

( 8 i−j) (ii)

2 +


3
3

i− 2 j (iii) − 6 k (iv) −

1
2

j+

5
4

k

14.(i)


3

2

i+

3

2

j (ii)


3 j+k (iii) i+j+k

15.Betweenaandbthe scalar product is 1
Betweenbandcthe scalar product is 3



2
Betweenaandcthe scalar products is− 0 .78 to two decimal places


  1. x·y=88,λ=−


16
3

18.(i) − 1 (ii) 20 (iii) 0, so these are orthogonal


19.(i) 84. 26 ° (ii) 123. 06 ° (iii) 60°


20.(i) 3



2 (ii) 0 (iii) −


2
Free download pdf