Answers
− 3 + 2 jj1
02 +j1 −j− 3 j− 3 − 2 jyx(i) 1^ ( 0 ) (ii) 1^(π
2)
(iii) 3^(
−π
2)(iv)√
2(
−π
4)
(v)√
5(
Tan−^1(
1
2))(vi)√
13(
π+Tan−^1(
2
3))
(vii)√
13(
π−Tan−^1(
2
3))(Tan−^1 denotes the principal value)- (i) 2 (ii) − 3 (iii) j (iv) −
3
√
2+3
√
2j(v)1
2−√
3
2j (vi) − 2 j12.4 Multiplication in polar form
Now comes the pay-off of polar forms – multiplication of complex numbers in such form is
simplicity itself – indeed it reduces tomultiplication ofmodulii andaddition ofargument.
See for yourself:
Problem 12.7
Multiply .q 1 /and .q 2 /, use the compound angle formulae (187
➤
)and
hence show thatr 1 .q 1 /r 2 .q 2 /=r 1 r 2  .q 1 Yq 2 /