Answers
− 3 + 2 j
j
1
0
2 +j
1 −j
− 3 j
− 3 − 2 j
y
x
(i) 1^ ( 0 ) (ii) 1^
(π
2
)
(iii) 3^
(
−
π
2
)
(iv)
√
2
(
−
π
4
)
(v)
√
5
(
Tan−^1
(
1
2
))
(vi)
√
13
(
π+Tan−^1
(
2
3
))
(vii)
√
13
(
π−Tan−^1
(
2
3
))
(Tan−^1 denotes the principal value)
- (i) 2 (ii) − 3 (iii) j (iv) −
3
√
2
+
3
√
2
j
(v)
1
2
−
√
3
2
j (vi) − 2 j
12.4 Multiplication in polar form
Now comes the pay-off of polar forms – multiplication of complex numbers in such form is
simplicity itself – indeed it reduces tomultiplication ofmodulii andaddition ofargument.
See for yourself:
Problem 12.7
Multiply .q 1 /and .q 2 /, use the compound angle formulae (187
➤
)and
hence show that
r 1 .q 1 /r 2 .q 2 /=r 1 r 2 .q 1 Yq 2 /