(d) By long division we find:
1
7 =^0.^142857142857 ...=^0.
̇ 142857 ̇
and the string of digits 142857 recur indefinitely as denoted by
the over dots at the ends of the sequence. To six decimal places
we can write
1
7 ^0.^142857
B.(ii) (a) 0. 3 =
3
10
(b) 0. 67 =
67
100
(c) 0. 6 ̇= 0. 6666 ...=^23
To see this, let x= 0. 6666 ...then 10x= 6. 6666 ...and
subtracting gives
9 x= 6
so x=^69 =^23
(d) 3. 142 =
3142
1000
C. (i) 11. 00132 = 1. 100132 × 10
mantissa= 1. 100132
exponent= 1
(ii) 1. 56 = 1. 56 × 100
mantissa= 1. 56
exponent= 0
(iii) 203. 45 = 2. 0345 × 102
mantissa= 2. 0345
exponent= 2
(iv) 0. 0000321 = 3. 21 × 10 −^5
mantissa= 3. 21
exponent=− 5
D.To three significant figures we have
(i) 11. 00132 = 11. 0
(ii) 1.56
(iii) 203. 45 = 203
(iv) 0. 000321 = 0. 000321
1.2.9 Estimation
➤
531 ➤
With the availability of calculators we are now used to having enormous number crunching
capability at our fingertips. But there are occasions when we don’t have our hands on a